AI Article Synopsis

  • - The kynurenine pathway (KP) is an alternative route for processing tryptophan, which can enhance our understanding of how stress-related changes affect neurotransmission in depression by producing compounds that influence glutamate levels in the brain.
  • - Research using Unpredictable Chronic Mild Stress (UCMS) showed increased breakdown of tryptophan via the KP in depressed-like mice, with significant changes in levels of key metabolites like kynurenine and serotonin.
  • - The study found differences in how kynurenine is metabolized in various brain regions, suggesting that alterations in the KP could be linked to the glutamatergic dysfunction observed in individuals with depression.

Article Abstract

Occurring both peripherally and centrally, the kynurenine pathway (KP) - an alternative pathway to 5-HT synthesis from tryptophan (TRP) - could be of particular value to better understand the link between peripheral changes of circulating levels of glucocorticoids (GC)/proinflammatory cytokines and altered neurotransmission observed in depressed patients. Indeed, it is activated by these mediators of stress and can produce several neuroactive compounds like quinolinic acid (QUIN) and kynurenic acid (KYNA) that can respectively increase and decrease glutamate concentration in brain. In order to characterize the role of both the peripheral and cerebral KP in the pathophysiology of depressive disorders, we used the Unpredictable Chronic Mild Stress (UCMS) to induce a depressive-like syndrome and we then measured the level of relevant TRP-KYN pathway metabolites: KYN, 3-hydroxykynurenine (3HK; precursor of QUIN) and KYNA. We also measured TRP-5HT pathway metabolites: TRP, 5-HT, 5-HIAA. We showed that UCMS increased TRP catabolism along the KP in the periphery. 5-HT and KYN were found to be strongly negatively correlated in all brain structures of control mice and of UCMS mice except in the hippocampus. More importantly we found that KYN was preferentially metabolized along the QUIN pathway at the subcortical level (amygdala/striatum) whereas, at the cortical level (cingulate cortex), the QUIN pathway was reduced. Considering the role of these metabolites on the glutamatergic neurotransmission, we propose that such KP alterations could participate to the cortical/subcortical glutamatergic alterations reported in depressed patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2010.02.014DOI Listing

Publication Analysis

Top Keywords

peripheral cerebral
8
depressed patients
8
pathway metabolites
8
quin pathway
8
pathway
7
cerebral metabolic
4
metabolic abnormalities
4
abnormalities tryptophan-kynurenine
4
tryptophan-kynurenine pathway
4
pathway murine
4

Similar Publications

The neural mechanisms of the affective-motivational symptoms of chronic pain are poorly understood. In chronic pain, our innate coping mechanisms fail to provide relief. Hence, these behaviors are manifested at higher frequencies.

View Article and Find Full Text PDF

VGLL-fusions define a new class of intraparenchymal CNS schwannoma.

Neuro Oncol

December 2024

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Charitéplatz 1, 10117 Berlin, Germany.

Background: Intracerebral schwannomas are rare tumors resembling their peripheral nerve sheath counterparts but localized in the CNS. They are not classified as a separate tumor type in the 2021 WHO classification. This study aimed to compile and characterize these rare neoplasms morphologically and molecularly.

View Article and Find Full Text PDF

Midbrain dopamine neurons are well-known to shape central nervous system function, yet there is growing evidence for their influence on the peripheral immune systems. Here we demonstrate that midbrain dopamine neurons form a circuit to the spleen via a multisynaptic pathway from the dorsal vagal complex (DVC) through the celiac ganglion. Midbrain dopamine neurons modulate the activity of D1-like and D2-like dopamine receptor-expressing DVC neurons.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a significant risk factor for Alzheimer's disease (AD). Despite multiple studies reporting this connection, the mechanism by which T2D exacerbates AD is poorly understood. It is challenging to design studies that address co-occurring and comorbid diseases, limiting the number of existing evidence bases.

View Article and Find Full Text PDF

Vasopressin (AVP), a nonapeptide synthesized predominantly by magnocellular hypothalamic neurons, is conveyed to the posterior pituitary the pituitary stalk, where AVP is secreted into the circulation. Known to regulate blood pressure and water homeostasis, it also modulates diverse social behaviors, such as pair-bonding, social recognition and cognition in mammals including humans. Importantly, AVP modulates social behaviors in a gender-specific manner, perhaps, due to gender differences in the distribution in the brain of AVP and its main receptor AVPR1a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: