The neurotoxin domoic acid (DA), produced by diatoms Pseudo-nitzschia spp., is transferred to humans via consumption of contaminated bivalves. This study examines feeding mechanisms, namely reduced filtration, pre-ingestive rejection and poor absorption, that might explain the comparatively low DA levels commonly found in oysters during toxic Pseudo-nitzschia blooms. Clearance rate (CR), absorption efficiency (AE) of organic matter and selective rejection in pseudofeces of oysters (Crassostrea virginica) and mussels (Mytilus edulis) were investigated in relation to the DA levels accumulated during 2-wk, simultaneous exposure to toxic Pseudo-nitzschia multiseries. Effects of temperature and P. multiseries cell size were also tested to identify conditions, if any, under which oysters can accumulate unsafe DA levels. Oysters accumulated 3.0-7.5x less DA than mussels from a short-celled P. multiseries clone (length=24microm) at 12 degrees C. This was related to the 7.4-8.5x lower CRs determined for oysters relative to mussels at this temperature. Exposure to a longer-celled P. multiseries clone (81microm) resulted in up to 70x lower toxin levels in oysters compared to mussels, which was attributed to differential feeding selectivity. Mussels were unable to discriminate between long- and short-celled P. multiseries clones from a mixed suspension, whereas oysters were previously shown to preferentially reject long cells (>70microm) in pseudofeces. Both bivalves selectively rejected P. multiseries cells from mixed suspensions containing a flagellate but not another diatom. AE of organics from P. multiseries cells by oysters and mussels was comparably low (42 and 39%, respectively) and thus unlikely to explain their differential DA accumulation. CR and DA uptake by oysters were negligible at

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2010.01.009DOI Listing

Publication Analysis

Top Keywords

oysters
10
neurotoxin domoic
8
domoic acid
8
oysters crassostrea
8
crassostrea virginica
8
virginica mussels
8
mussels mytilus
8
mytilus edulis
8
toxic pseudo-nitzschia
8
levels oysters
8

Similar Publications

Coastal ecosystems are degraded worldwide and oyster reefs are among the most threatened coastal habitats. Oysters are a critical ecosystem engineer and valuable fishery species, thus effective management strategies must balance tradeoffs between protecting reef ecosystems and continued human use. Management practices for oysters commonly incorporate shell replenishment (provisioning hard substrates to increase reef relief) and spatial management (rotational harvest areas or sanctuaries); however, the impact of these practices on reef dynamics and fisheries outcomes are poorly understood, particularly on harvested reefs.

View Article and Find Full Text PDF

Pinctada birnavirus (PiBV) is the causative agent of summer atrophy in pearl oyster ( (Gould)). The disease, which induces mass mortality in juveniles less than 1 year old and abnormalities in adults, was first reported in Japan in 2019. Research on the disease has been hindered by the lack of cell lines capable of propagating PiBV.

View Article and Find Full Text PDF

The Prevalence of Enteric Viruses in Bivalve Molluscs in a Farming Area in Liguria, Northwest Italy.

Pathogens

December 2024

Department of Levante Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via degli Stagnoni 96, 19100 La Spezia, Italy.

Bivalve molluscs are filter-feeding organisms, capable of concentrating pathogenic microorganisms from the surrounding environment, thus contributing to the spread of viral pathogens, which they can transmit to humans, especially if eaten raw or undercooked. Although norovirus (NoV) and the hepatitis A virus (HAV) are considered the most common causes of foodborne infections, in recent years, other viruses with a zoonotic potential have been identified in shellfish, such as the hepatitis E virus (HEV), astrovirus (AsV), and aichi virus (AiV). The aim of the study was to investigate the presence of classical and emerging pathogenic enteric viruses in oysters () and mussels () from a mollusc farming area in the northwest of Italy, between April 2022 and March 2023.

View Article and Find Full Text PDF

Evaluating Ecosystem Characteristics and Ecological Carrying Capacity for Marine Fauna Stock Enhancement Within a Marine Ranching System.

Animals (Basel)

January 2025

Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.

China has recently launched extensive marine ranching projects, highlighting the need for scientific evaluation of ecosystem structure and function to guide their development. This study established two energy flow models and an evaluation index system to assess the structure, function, carrying capacity, and ecological status of both a marine ranching ecosystem and a nearby control site in the Beibu Gulf. The results show that the ranching ecosystem outperformed the control ecosystem in terms of food chain length, system size, and ecological carrying capacity of economically important species.

View Article and Find Full Text PDF

This study aimed to evaluate the use of oyster mushroom () powder (OMP) for producing rye bread. The raw materials were low-extract rye flour and OMP, which were analyzed in terms of their nutritional and health-promoting qualities. Mixtures of rye flour with OMP were prepared, replacing 5, 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!