Flavonoids are polyphenolic compounds that have attracted the attention of the scientific community as the hallmark molecules responsible for cancer prevention by a plethora of different mechanisms. One of their most important characteristics, responsible for their cancer preventive properties, is their interaction with cytochrome P450 CYP1 enzymes. Flavonoids have traditionally been described as CYP1 inhibitors due to the inhibition of carcinogenic product formation and consequent blockage of the initiation stage of carcinogenesis. However, mounting evidence indicate that flavonoids are also capable of acting as CYP1 substrates, undergoing bioactivation to more antiproliferative agents within cancer cells. In this review, a comprehensive summary of the two models is presented. Structural features responsible for CYP1 inhibition or substrate turnover are discussed and limitations as well as discrepancies between procarcinogen-activating and 7-ethoxyresorufin-inhibition assay systems are further explored in vitro and in vivo. Moreover, a thorough investigation of the substrate specificity of flavonoids for the active site of CYP1 enzymes is undertaken. Finally, issues concerning the bioavailability and metabolic fate of these compounds in vivo are addressed. Ultimately, the mode of flavonoid action, in terms of CYP1 inhibition or CYP1-mediated bioactivation, is dependent on the lipophilicity or hydrophilicity of each compound. The degree of hydroxylation or methoxylation of the A and B rings is the major factor which determines the accessibility to the tumor site, in terms of hepatic and intestinal metabolism, and the introduction of the molecules to the CYP1 active site, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pharmthera.2010.01.009 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland.
Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.
View Article and Find Full Text PDFSci Rep
January 2025
Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant public health problem that will worsen with a warming climate and increased large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1 A (CYP1A) gene in wild Fundulus heteroclitus that have adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH.
View Article and Find Full Text PDFJ Int Soc Sports Nutr
December 2025
University of Bologna-Alma Mater Studiorum, Department of Quality of Life Sciences, Bologna, Italy.
Background: Understanding the impact of caffeine intake on body composition is a topic of growing research interest. The article "Association Between Caffeine Intake and Fat-Free Mass Index: A Retrospective Cohort Study" by Tian et al. explored this relationship, highlighting a positive correlation between caffeine consumption and fat-free mass index (FFMI).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Italy.
Obesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!