A human melanoma cell line called MeWo-LC1 exhibits a reduced ability to synthesize DNA when cultured in serum-supplemented medium containing 5'-deoxy-5'-methylthioadenosine (MeSAdo) in place of methionine. However, DNA replication in these cells occurs normally if the cells are cultured in serum-free medium containing transferrin, and MeSAdo in place of methionine. Although the presence of serum alters the cells' ability to respond to MeSAdo, it is not likely a consequence of any increased extracellular metabolism by MeSAdo-phosphorylase or adenosine deaminase activity, or due to the diminished uptake of the nucleoside. In the presence of methionine, MeSAdo appears to have a stronger cytostatic effect in medium containing serum than in serum-free medium supplemented with transferrin. MeWo-LC1 cells contain MeSAdo-phosphorylase activity as measured both in vivo and in vitro. The diminished replication of DNA in medium containing serum and MeSAdo is likely not due to the inhibition of polyamine synthesis by the nucleoside. These results indicate that serum (factors) can have an important influence upon the ability of MeSAdo to act as a methio-source for cells cultured in the absence of methionine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4781(91)90126-7DOI Listing

Publication Analysis

Top Keywords

dna replication
8
human melanoma
8
melanoma cell
8
mesado place
8
place methionine
8
cells cultured
8
serum-free medium
8
medium serum
8
mesado
6
serum
5

Similar Publications

Catalytic subunit of DNA polymerase ζ (REV3), involved in translesion-replication is evolutionarily conserved from yeast and plants to higher eukaryotes. However, a large intermediate domain is inserted in REV3 of humans and mice. The domain has "DUF4683" region, which is significantly similar to human neurite extension and migration factor (NEXMIF).

View Article and Find Full Text PDF

BEND6 promotes RNA viruses' replication by inhibiting innate immune responses.

Sci China Life Sci

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.

Innate immunity serves as a crucial defense mechanism against invading pathogens, yet its negative regulatory network remains under explored. In this study, we identify BEN domain-containing protein 6 (BEND6) as a novel negative regulator of innate immunity through a genome-scale CRISPR knockout screen for host factors essential for viral replication. We show that BEND6 exhibits characteristics of an interferon-stimulated gene (ISG), with its mRNA and protein levels upregulated by RNA virus-induced IFN-β.

View Article and Find Full Text PDF

Nanopore sequencing reveals that DNA replication compartmentalisation dictates genome stability and instability in Trypanosoma brucei.

Nat Commun

January 2025

University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom.

The Trypanosoma brucei genome is structurally complex. Eleven megabase-sized chromosomes each comprise a transcribed core flanked by silent subtelomeres, housing thousands of Variant Surface Glycoprotein (VSG) genes. Additionally, hundreds of sub-megabase chromosomes contain 177 bp repeats of unknown function, and VSG transcription sites localise to many telomeres.

View Article and Find Full Text PDF

DNA methylation, catalyzed by DNA methyltransferases (DNMT), plays pivotal role in regulating embryonic development, gene expression, adaption to environmental stress, and maintaining genome integrity. DNMT family consists of DNMT1, DNMT3A, DNMT3B, and the enzymatically inactive DNMT3L. DNMT3A and DNMT3B establish novel methylation patterns maintained by DNMT1 during replication.

View Article and Find Full Text PDF

Watson-Crick and Hoogsteen hydrogen bonds aid the formation of highly ordered structures in genomic DNA that dynamically govern genetic modes such as gene regulation and replication. Hence, measuring and distinguishing these two types of hydrogen bonds in different DNA contexts are essential for understanding DNA architectures. However, due to their transient nature and minimal structure differences at the sub-nanometer scale, differentiating Watson-Crick hydrogen bonds from Hoogsteen hydrogen bonds is difficult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!