The final step of hypusine formation in the eukaryotic translation initiation factor 4D (eIF-4D) is mediated by the enzyme deoxyhypusyl hydroxylase. In an effort to find specific inhibitors for this enzyme, we have studied the effects of two catecholpeptides, N alpha-acetyl-N delta-(3,4-dihydroxybenzoyl)-L-Orn-L-Pro-Gly (compound I) and N alpha-acetyl-N delta-(2,3-dihydroxybenzoyl)-L-Orn-L-Pro-Gly (compound II). Their structures were designed for anchorage to the enzyme s active site, utilizing the catechol-mediated chelation of a putative, enzyme-bound metal ion. Both compounds were found to strongly inhibit hypusine formation in vitro. Compound I was about seven times more potent than compound II, whereas the component peptide itself showed no intrinsic inhibitory activity even at concentrations as high as 1 mM. When used in conjugation with a chelating catechol moiety, however, it gave a 17- and an 8-fold enhancement of the half-maximal inhibition mediated by the chelating moieties per se, i.e. the 3,4- and the 2,3-dihydroxybenzoyl esters, respectively. The mode of inhibition by compound I was competitive with respect to the unhydroxylated precursor of eIF-4D and showed a Ki value of 32 microM +/- 3.4 microM. These catecholpeptides are the most efficient peptide antagonists of deoxyhypusyl hydroxylase known at present. They allow an assessment of the enzyme's active site organization and provide the first experimental evidence that a metal ion constitutes an integral part of its catalytic center.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0167-4838(91)90053-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!