Osteopontin (OPN) is an integrin-binding protein found in a variety of tissues and physiological fluids and is involved in divergent biological processes such as migration, adhesion and signaling in integrin-independent as well as dependent manners. The adhesive activity of this protein is modulated upon cleavage by thrombin at the central part of the molecule, in the vicinity of the integrin-binding sequences. Although detailed structural characterization is crucial for further understanding of the regulatory mechanisms of the OPN functions, its intrinsically disordered property hampers in-depth conformational analyses. Here we report an NMR study of mouse OPN and its N-terminal thrombin-cleavage product to characterize intramolecular interaction of this molecule. Paramagnetic relaxation enhancement experiment revealed that OPN exhibits a long-range intramolecular interaction between the N- and C-terminal regions. Furthermore, our NMR data showed that anti-OPN antibody OPN1.2, whose reactivity is impaired by deletion or amino acid substitutions of the arginine-aspartate-glycine integrin-binding motif, binds the N-terminal side of the integrin-binding motifs suggesting the existence of intramolecular interaction. These data suggest that functional interactions of OPN with integrins and the other binding partners can be modulated by the intramolecular interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.02.030DOI Listing

Publication Analysis

Top Keywords

intramolecular interaction
16
intrinsically disordered
8
integrin-binding motifs
8
intramolecular
5
integrin-binding
5
opn
5
nmr characterization
4
characterization intramolecular
4
interaction
4
interaction osteopontin
4

Similar Publications

Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further studies showed that such -evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target.

View Article and Find Full Text PDF

Synergy of Copper Doping and Carbon Defect Engineering in Promoting C-C Coupling for Enhanced CO Photoreduction to Ethanol Activity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.

Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.

View Article and Find Full Text PDF

Apigenin (Api), a flavonoid possessing dual features of antioxidant activity and intramolecular hydrogen bond (IMHB), is subjected to an external electric field (EEF) to investigate its excited-state antioxidant activity after excited state intramolecular proton transfer (ESIPT) behavior employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, as well as molecular docking. The existence of IMHB is demonstrated by structural parameters and AIM topological analysis, where Api in the enol form under an EEF of +60 × 10 a.u.

View Article and Find Full Text PDF

Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer.

Photochem Photobiol Sci

December 2024

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan.

The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.

View Article and Find Full Text PDF

Constructing an Isopolymolybdate-Based Bifunctional Photocatalyst for Promoting Nitroaromatic Reduction and C-H Oxidation.

Inorg Chem

December 2024

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Amide compounds are widely present in drug molecules and natural products, which can be synthesized by acid-amine condensation. It is urgent to design new photocatalysts for achieving both nitroaromatic reduction and C-H oxidation to obtain raw materials, carboxylic acids, and aromatic amines. Herein, a novel isopolymolybdate-incorporated photoactive metal-organic framework, -TPT, was constructed by combining the oxidation catalyst [MoO], Ni(II) cation, and photosensitive ligand 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!