AI Article Synopsis

  • A study introduced an affordable platform for detecting thrombin through biomolecular interactions using surface plasmon resonance with an aptamer-based assay.
  • Two types of surfaces—carboxylated cross-linked BSA (cBSA) and carboxymethylated dextran chip (CM5)—were employed to anchor the thrombin-binding aptamer.
  • The cBSA-based aptasensor showed reliable selectivity, stability, and regeneration capabilities, performing comparably to the higher-end CM5 platform across both buffer and plasma samples.

Article Abstract

A novel low-cost platform to assess biomolecular interactions was investigated using surface plasmon resonance and an aptamer-based assay for thrombin detection. Gold SPR surface functionalized with a carboxylated cross-linked BSA film (cBSA) and commercially available carboxymethylated dextran chip (CM5) were used as immobilization platforms for the thrombin binding aptamer. The high end commercial instrument Biacore 3000 and a custom made FIA set-up involving TI Spreeta sensor (TSPR2K23) were used to assess different concentrations of thrombin within the range 0.1-150 nM both in buffer and in a complex matrix (plasma) using the obtained aptasensors. Based on data derived from both CM5 and cBSA platforms, the cBSA aptasensor exhibited good selectivity, stability and regeneration ability, both in buffer and in complex matrices (plasma), comparable with CM5.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2009.11.023DOI Listing

Publication Analysis

Top Keywords

novel low-cost
8
surface plasmon
8
plasmon resonance
8
buffer complex
8
low-cost easy
4
easy develop
4
develop functionalization
4
functionalization platform
4
platform case
4
case study
4

Similar Publications

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones.

View Article and Find Full Text PDF

A Novel Self-Opening Transfer Shuttle for the Transfer of Air-Sensitive Sample to Scanning Electron Microscopy.

Microsc Microanal

January 2025

Instrumental Analysis Center, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province 116024, China.

A self-opening transfer shuttle has been designed and fabricated for the transfer of air-sensitive samples to scanning electron microscopy (SEM). Delayed push out of an airtight sample cabin sealed inside the shuttle allows the protection of the sample from air exposure during the pumping of SEM chamber. A compressed spring is employed to automatically drive the push out of the cabin.

View Article and Find Full Text PDF

The shortcomings of precious metal based catalysts have limited the development of novel energies. So, developing low-cost and high performance transition metal based catalysts is one of the most feasible way to substitute the precious metal based catalysts. In all of the developed catalysts for oxygen reduction reactions (ORR), the iron-based nitrogen doped carbon nanotube (N-CNT) show great promise.

View Article and Find Full Text PDF

Carbon dots (CDs) are promising candidates as oxygen photosensitizers, in cancer therapeutic applications due to their high quantum yield, superior chemical and photostability, low cytotoxicity and ease of chemical functionalization/tuning. Nitrogen doping can further improve oxygen photosensitization performance. Besides photodynamic therapy, however, the possibility to finely and remotely regulate the intracellular redox balance by using physical stimuli has been attracting more and more interest not only for nanotheranostic application, but also as a novel, fully biocompatible therapeutic tool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!