Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multivariate spectral analysis has been widely applied in chemistry and other fields. Spectral data consisting of measurements at hundreds and even thousands of analytical channels can now be obtained in a few seconds. It is widely accepted that before a multivariate regression model is built, a well-performed variable selection can be helpful to improve the predictive ability of the model. In this paper, the concept of traditional wavelength variable selection has been extended and the idea of variable weighting is incorporated into least-squares support vector machine (LS-SVM). A recently proposed global optimization method, particle swarm optimization (PSO) algorithm is used to search for the weights of variables and the hyper-parameters involved in LS-SVM optimizing the training of a calibration set and the prediction of an independent validation set. All the computation process of this method is automatic. Two real data sets are investigated and the results are compared those of PLS, uninformative variable elimination-PLS (UVE-PLS) and LS-SVM models to demonstrate the advantages of the proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2009.10.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!