Tissue-specific interplay between copper uptake and efflux in Drosophila.

J Biol Inorg Chem

School of Biological Sciences, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia.

Published: May 2010

The vinegar fly Drosophila melanogaster is proving to be an excellent system to study the in vivo regulation of the essential metal copper. The Ctr1A/B and DmATP7 copper transport proteins have well-established roles in Drosophila copper uptake and efflux, respectively. Both Ctr1A and DmATP7 are essential genes, whereas Ctr1B mutants are viable but die in excess or depleted copper conditions. Less is known about the tissue-specific requirements for these three genes and how they interact to maintain copper homeostasis in different cell types. Here, we use targeted overexpression and suppression of each gene to examine these questions in vivo. We find that in the epidermal cells that form the adult thoracic and abdominal cuticle, Ctr1A plays a major role in copper uptake, whereas Ctr1B plays only a minor supporting role and DmATP7, as previously shown, is essential for transfer of copper to the trans-Golgi network. We also find that the copper chaperone dSco1 appears necessary for supplying the mitochondria with copper in these tissues. In contrast, in the developing Drosophila eye, DmATP7 appears to be non-essential unless copper levels in these cells are artificially elevated. Again, Ctr1A is the main copper uptake gene in the eye, but when ectopically expressed, Ctr1B has greater phenotypic effects than Ctr1A. Furthermore, Ctr1A and Ctr1B show a dramatic synergistic interaction, indicating their relationship is more complicated than a simply additive one and that they may in fact act cooperatively for optimal copper import.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00775-010-0629-yDOI Listing

Publication Analysis

Top Keywords

copper uptake
16
copper
13
uptake efflux
8
dmatp7 essential
8
ctr1a
5
tissue-specific interplay
4
interplay copper
4
uptake
4
drosophila
4
efflux drosophila
4

Similar Publications

Genotypic difference in response to copper stress in upland cotton as revealed by physiological and molecular expression analyses.

BMC Plant Biol

January 2025

Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.

Article Synopsis
  • Cotton has potential for cleaning copper-polluted soil, yet its tolerance mechanisms to copper toxicity remain unclear.
  • Two cotton lines, A2304 (Cu-tolerant) and A1415 (Cu-sensitive), were studied for their morphological and physiological responses to copper excess, revealing A2304's superior antioxidant activities and lower reactive oxygen species.
  • A2304 exhibited smarter gene expression changes for copper handling, reducing active copper ion concentrations while maintaining similar overall copper uptake compared to A1415, thus potentially mitigating copper toxicity effects.
View Article and Find Full Text PDF

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF

Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in soils pose significant environmental and health risks due to their persistence, toxicity, and potential for bioaccumulation. These metals often originate from anthropogenic activities such as industrial emissions, agricultural practices, and improper waste disposal.

View Article and Find Full Text PDF

Exogenous 24-Epibrassinolide alleviates salt stress in Okra L by increasing the expression of pathway genes () and .

Physiol Mol Biol Plants

December 2024

Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.

Given the rising population and food demand, it is imperative to devise solutions to enhance plant resilience against abiotic stresses. Salinity stress impacts plant growth but also hampers plant performance and productivity. Plant hormones have emerged as a viable remedy to mitigate the detrimental effects of salinity stress on plants.

View Article and Find Full Text PDF

Fibroblast activation protein inhibitors (FAPIs) labeled with gallium-68 and lutetium-177 show potential for use in the diagnosis and treatment of various cancers expressing FAP. However, Lu-labeled FAPIs often exhibit short tumor retention time, limiting their therapeutic applications. To improve tumor retention, we synthesized three radiolabeled dimeric FAPIs, [F], [Cu], and [Ga].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!