Agrobacterium tumefaciens causes tumour formation in plants. Plant signals induce in the bacteria the expression of a range of virulence (Vir) proteins and the formation of a type IV secretion system (T4SS). On attachment to plant cells, a transfer DNA (T-DNA) and Vir proteins are imported into the host cells through the bacterial T4SS. Through interaction with a number of host proteins, the Vir proteins suppress the host innate immune system and support the transfer, nuclear targeting, and integration of T-DNA into host cell chromosomes. Owing to extensive genetic analyses, the bacterial side of the plant-Agrobacterium interaction is well understood. However, progress on the plant side has only been achieved recently, revealing a highly complex molecular choreography under the direction of the Vir proteins that impinge on multiple processes including transport, transcription, and chromosome status of their host cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845280PMC
http://dx.doi.org/10.1038/emboj.2010.8DOI Listing

Publication Analysis

Top Keywords

vir proteins
16
tumour formation
8
formation plants
8
plants plant
8
host cells
8
proteins
5
host
5
insights story
4
story agrobacterium-induced
4
agrobacterium-induced tumour
4

Similar Publications

Engineered ipilimumab variants that bind human and mouse CTLA-4.

MAbs

December 2025

Biotherapeutics and Genetic Medicine, AbbVie, South San Francisco, CA, USA.

Testing of candidate monoclonal antibody therapeutics in preclinical models is an essential step in drug development. Identification of antibody therapeutic candidates that bind their human targets and cross-react to mouse orthologs is often challenging, especially for targets with low sequence homology. In such cases, surrogate antibodies that bind mouse orthologs must be used.

View Article and Find Full Text PDF

Developing a broad-spectrum antiviral is imperative in light of the recent emergence of recurring viral infections. The critical role of host-virus attachment and membrane fusion during enveloped virus entry is a suitable target for developing broad-spectrum antivirals. A new class of flavonoid-based fusion inhibitors are designed to alter the membrane's physical properties.

View Article and Find Full Text PDF

Background: Transarterial chemoembolisation (TACE) is standard of care for patients with unresectable hepatocellular carcinoma that is amenable to embolisation; however, median progression-free survival is still approximately 7 months. We aimed to assess whether adding durvalumab, with or without bevacizumab, might improve progression-free survival.

Methods: In this multiregional, randomised, double-blind, placebo-controlled, phase 3 study (EMERALD-1), adults aged 18 years or older with unresectable hepatocellular carcinoma amenable to embolisation, an Eastern Cooperative Oncology Group performance status of 0 or 1 at enrolment, and at least one measurable intrahepatic lesion per modified Response Evaluation Criteria in Solid Tumours (RECIST) were enrolled at 157 medical sites including research centres and general and specialist hospitals in 18 countries.

View Article and Find Full Text PDF

Full-length hepatitis B virus (HBV) transcripts of chimpanzees and patients treated with multidose (MD) HBV siRNA ARC-520 and entecavir (ETV) were characterized by single-molecule real-time (SMRT) sequencing, identifying multiple types of transcripts with the potential to encode HBx, HBsAg, HBeAg, core, and polymerase, as well as transcripts likely to be derived from dimers of dslDNA, and these differed between HBeAg-positive (HBeAg+) and HBeAg-negative (HBeAg-) individuals. HBV transcripts from the last follow-up ~30 months post-ARC-520 treatment were categorized from one HBeAg+ (one of two previously highly viremic patients that became HBeAg- upon treatment and had greatly reduced cccDNA products) and four HBeAg- patients. The previously HBeAg+ patient received a biopsy that revealed that he had 3.

View Article and Find Full Text PDF

Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!