A new method for the simultaneous online measurement of sulfide and nitrate in wastewater is developed. A UV-VIS spectrometer was used. The sensor was calibrated by means of simultaneous online and offline measurements of sulfide and nitrate in batch tests carried out on a laboratory-scale sewer system. The developed calibration algorithm was successfully validated for both sulfide and nitrate measurement, with confidence limits of 2.7 mg S/L for total dissolved sulfide, and 7.5 mg N/L for nitrate. The online measurement of sulfide and nitrate enabled detailed evaluation of seven nitrate dosing strategies in the laboratory-scale sewer system, providing strong support to process optimisation. The dosage optimisation revealed that nitrate should be added at a location close to the point of sulfide control rather than at the beginning of a rising main, at a rate proportional to the expected hydraulic retention time (HRT) of the wastewater in the sewer section between the point of nitrate addition and the point where sulfide control is desired.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2010.901 | DOI Listing |
World J Microbiol Biotechnol
January 2025
National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan.
The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India.
Coastal deoxygenation impacts phytoplankton communities crucial for marine productivity. The inter- and intra-annual variability in phytoplankton communities at a shallow (27 m) station over the Western Indian Shelf (CaTS site, off Goa) during deoxygenation events of the late southwest monsoon (LSWM September-October) were studied from 2020 to 2023. The water column (0-27 m depth) experienced seasonal hypoxia/anoxia at subsurface depths (0-1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
Efficient separation of hydrogen isotopes, especially deuterium (D), is pivotal for advancing industries such as nuclear fusion, semiconductor processing, and metabolic imaging. Current technologies, including cryogenic distillation and Girdler sulfide processes, suffer from significant limitations in selectivity and cost-effectiveness. Herein, we introduce a novel approach utilizing an imidazolium-based Metal-Organic Framework (MOF), JCM-1, designed to enhance D/H separation through temperature-dependent gate-opening controlled by ion exchange.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.
NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
Ionic liquid (IL) units in heterogeneous catalysts exhibit synergistic effects to enhance catalytic performance and stabilize catalytically active centers, while also preventing the degradation of catalysts during the reaction process. Ionic liquid units in IL-functionalized CMOF catalysts enhance their catalytic performance in a synergistic manner. However, not only are the yields of IL-functionalized CMOFs obtained with post-synthesis methods low, but they also lead to blocking of the MOF pores and leaching of the ionic liquid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!