Neuritogenesis, or neurite outgrowth, is a critical process for neuronal differentiation and maturation in which growth cones are formed from highly dynamic actin structures. Gas7 (growth arrest-specific gene 7), a new member of the PCH (Pombe Cdc15 homology) protein family, is predominantly expressed in neurons and is required for the maturation of primary cultured Purkinje neurons as well as the neuron-like differentiation of PC12 cells upon nerve growth factor stimulation. We report that Gas7 co-localizes and physically interacts with N-WASP, a key regulator of Arp2/3 complex-mediated actin polymerization, in the cortical region of Gas7-transfected Neuro-2a cells and growth cones of hippocampal neurons. The interaction between Gas7 and N-WASP is mediated by WW-Pro domains, which is unique in the PCH protein family, where most interactions are of the SH3-Pro kind. The interaction contributes to the formation of membrane protrusions and processes by recruiting the Arp2/3 complex in a Cdc42-independent manner. Importantly, specific interaction between Gas7 and N-WASP is required for regular neurite outgrowth of hippocampal neurons. The data demonstrate an essential role of Gas7 through its interaction with N-WASP during neuronal maturation/differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283256 | PMC |
http://dx.doi.org/10.1074/jbc.M109.051094 | DOI Listing |
Front Cell Dev Biol
January 2025
Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied.
View Article and Find Full Text PDFMol Metab
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
Spinal cord injury (SCI) remains a formidable challenge in biomedical research, as the silencing of intrinsic regenerative signals in most spinal neurons results in an inability to reestablish neural circuits. In this study, we found that neurons with low axonal regeneration after SCI showed decreased extracellular signal-regulated kinase (ERK) phosphorylation levels. However, the expression of dual specificity phosphatase 26 (DUSP26)─which negatively regulates ERK phosphorylation─was reduced considerably in neurons undergoing spontaneous axonal regeneration.
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.
The differentiation of mouse neurons is a complex process involving cell maturation and branching, occurring during both, embryonic development and differentiation in vitro. To study mouse neuronal morphology, we used the Thy1 YFP-16 mouse strain. Although this mouse strain was described over twenty years ago, detailed studies on projections outgrowth and morphology of neurons are still lacking.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America. Electronic address:
Modeling brain development and function is challenging due to complexity of the organ. Human pluripotent stem cell (PSC)-derived brain-like organoids provide new tools to study the human brain. Compared with traditional in vivo toxicological studies, these 3D models, together with 2D cellular assays, enhance our understanding of the mechanisms of developmental neurotoxicity (DNT) during the early stages of neurogenesis and offer numerous advantages including a rapid, cost-effective approach for understanding compound mechanisms and assessing chemical safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!