A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Hawaiian bobtail squid (Euprymna scolopes): a model to study the molecular basis of eukaryote-prokaryote mutualism and the development and evolution of morphological novelties in cephalopods. | LitMetric

The Hawaiian bobtail squid, Euprymna scolopes, is a cephalopod whose small size, short lifespan, rapid growth, and year-round availability make it suitable as a model organism. E. scolopes is studied in three principal contexts: (1) as a model of cephalopod development; (2) as a model of animal-bacterial symbioses; and (3) as a system for studying adaptations of tissues that interact with light. E. scolopes embryos can be obtained continually and can be reared in the laboratory over an entire generation. The embryos and protective chorions are optically clear, facilitating in situ developmental observations, and can be manipulated experimentally. Many molecular protocols have been developed for studying E. scolopes development. This species is best known, however, for its symbiosis with the luminous marine bacterium Vibrio fischeri and has been used to study determinants of symbiont specificity, the influence of symbiosis on development of the squid light organ, and the mechanisms by which a stable association is achieved. Both partners can be grown independently under laboratory conditions, a feature that offers the unusual opportunity to manipulate the symbiosis experimentally. Molecular and genetic tools have been developed for V. fischeri, and a large expressed sequence tag (EST) database is available for the host symbiotic tissues. Additionally, comparisons between light organ form and function to those of the eye can be made. Both types of tissue interact with light, but have divergent embryonic development. As such, they offer an opportunity to study the molecular basis for the evolution of morphological novelties.

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.emo135DOI Listing

Publication Analysis

Top Keywords

hawaiian bobtail
8
bobtail squid
8
squid euprymna
8
euprymna scolopes
8
study molecular
8
molecular basis
8
evolution morphological
8
morphological novelties
8
interact light
8
experimentally molecular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!