AI Article Synopsis

  • The study explored how different immobilizing hydrogels impact biohydrogen production by a Thermoanaerobacterium isolate, finding that immobilization enhances both substrate conversion and hydrogen production.
  • Using alginate-supported cultures resulted in a hydrogen yield of 1.9 mol H(2)/mol glucose after 24 hours, while cationic acrylic hydrogels boosted cell immobilization and achieved a peak production of 3.6 mol H(2)/mol glucose.
  • Despite good durability of all tested hydrogels in repeated batch runs, the buildup of gaseous and acidic byproducts hindered continued hydrogen production, redirecting carbon flow towards other metabolites and biomass.

Article Abstract

The effect of the surface charge of different immobilizing hydrogels on biohydrogen production in batch cultures was investigated using a novel isolate associated to the genus Thermoanaerobacterium. Two crosslinked polysaccharide-based hydrogels and two acrylic hydrogels were tested as polymeric carriers for cell adsorption. Immobilization improved both substrate conversion and hydrogen cumulative production compared to the suspended culture, and a yield of 1.9 mol H(2)/mol glucose was observed after 24h for alginate-supported cultures. Cationic carriers dramatically increased cell immobilization, leading to markedly faster kinetics of substrate degradation and hydrogen production in batch operation, with a peak of 3.6 mol H(2)/mol glucose for the acrylic hydrogel HM92. Accumulation of gaseous and acidic metabolites inhibited further H(2) production, shifting the carbon flow to reduced end-products and biomass synthesis. Preliminary tests showed that all the tested hydrogels had good durability and allowed hydrogen production on repeated batch runs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2010.01.061DOI Listing

Publication Analysis

Top Keywords

surface charge
8
biohydrogen production
8
production batch
8
mol h2/mol
8
h2/mol glucose
8
hydrogen production
8
production
6
charge hydrogel
4
hydrogel supports
4
supports thermophilic
4

Similar Publications

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.

View Article and Find Full Text PDF

Concurrent Pressure-Induced Superconductivity and Photoconductivity Transitions in PbSeTe.

Adv Mater

December 2024

Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.

Concurrent superconductivity and negative photoconductivity (NPC) are rarely observed. Here, the discovery in PbSeTe of superconductivity and photoconductivity transitions between positive photoconductivity (PPC) and NPC during compression is reported to ≈40 GPa and subsequent decompression, which are also accompanied by reversible structure transitions (3D Fm m ⇌ 2D Pnma ⇌ 3D Pm m). Superconductivity with a maximum T of ≈6.

View Article and Find Full Text PDF

Helical Surface Relief Formation by Two-Photon Polymerization Reaction Using a Femtosecond Optical Vortex Beam.

J Phys Chem Lett

December 2024

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.

View Article and Find Full Text PDF

Water-Enabled Electricity Generation by a Smooth Liquid-Like Semiconductor Coating Surface.

Small

December 2024

Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

Water energy-converting techniques that focus on interfacial charge separation and transfer have aroused significant attention. However, the water-repelling nature leads to a less dense liquid layer and a sharp gradient of liquid velocity, which limits its output performance. Here, a water sliding generator (WSG) based on a smooth liquid-like/semiconductor surface (SLSS) is developed that harnesses the full advantage of liquid sliding friction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!