A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. | LitMetric

AI Article Synopsis

  • Hydroxytyrosol, an antioxidant in olives, protects human retinal pigment epithelial cells from oxidative damage caused by the toxin acrolein, which is linked to age-related macular degeneration.
  • The protective effect is due to its ability to activate two important pathways: phase II detoxifying enzymes and mitochondrial biogenesis.
  • Hydroxytyrosol treatment enhances key proteins and enzymes that help reduce oxidative stress and promote cell health, suggesting that it could be beneficial for eye health through dietary consumption.

Article Abstract

Studies in this laboratory have previously shown that hydroxytyrosol, the major antioxidant polyphenol in olives, protects ARPE-19 human retinal pigment epithelial cells from oxidative damage induced by acrolein, an environmental toxin and endogenous end product of lipid oxidation, that occurs at increased levels in age-related macular degeneration lesions. A proposed mechanism for this is that protection by hydroxytyrosol against oxidative stress is conferred by the simultaneous activation of two critically important pathways, viz., induction of phase II detoxifying enzymes and stimulation of mitochondrial biogenesis. Cultured ARPE-19 cells were pretreated with hydroxytyrosol and challenged with acrolein. The protective effects of hydroxytyrosol on key factors of mitochondrial biogenesis and phase II detoxifying enzyme systems were examined. Hydroxytyrosol treatment simultaneously protected against acrolein-induced inhibition of nuclear factor-E2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor coactivator 1 alpha (PPARGC1α) in ARPE-19 cells. The activation of Nrf2 led to activation of phase II detoxifying enzymes, including γ-glutamyl-cysteinyl-ligase, NADPH (nicotinamide adenine dinucleotide phosphate)-quinone-oxidoreductase 1, heme-oxygenase-1, superoxide dismutase, peroxiredoxin and thioredoxin as well as other antioxidant enzymes, while the activation of PPARGC1α led to increased protein expression of mitochondrial transcription factor A, uncoupling protein 2 and mitochondrial complexes. These results suggest that hydroxytyrosol is a potent inducer of phase II detoxifying enzymes and an enhancer of mitochondrial biogenesis. Dietary supplementation of hydroxytyrosol may contribute to eye health by preventing the degeneration of retinal pigment epithelial cells induced by oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2009.09.006DOI Listing

Publication Analysis

Top Keywords

phase detoxifying
20
mitochondrial biogenesis
16
retinal pigment
12
pigment epithelial
12
epithelial cells
12
detoxifying enzymes
12
hydroxytyrosol
8
oxidative damage
8
simultaneous activation
8
biogenesis phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!