A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding human functioning using graphical models. | LitMetric

Understanding human functioning using graphical models.

BMC Med Res Methodol

Swiss Paraplegic Research (SPF), Nottwil, Switzerland.

Published: February 2010

Background: Functioning and disability are universal human experiences. However, our current understanding of functioning from a comprehensive perspective is limited. The development of the International Classification of Functioning, Disability and Health (ICF) on the one hand and recent developments in graphical modeling on the other hand might be combined and open the door to a more comprehensive understanding of human functioning. The objective of our paper therefore is to explore how graphical models can be used in the study of ICF data for a range of applications.

Methods: We show the applicability of graphical models on ICF data for different tasks: Visualization of the dependence structure of the data set, dimension reduction and comparison of subpopulations. Moreover, we further developed and applied recent findings in causal inference using graphical models to estimate bounds on intervention effects in an observational study with many variables and without knowing the underlying causal structure.

Results: In each field, graphical models could be applied giving results of high face-validity. In particular, graphical models could be used for visualization of functioning in patients with spinal cord injury. The resulting graph consisted of several connected components which can be used for dimension reduction. Moreover, we found that the differences in the dependence structures between subpopulations were relevant and could be systematically analyzed using graphical models. Finally, when estimating bounds on causal effects of ICF categories on general health perceptions among patients with chronic health conditions, we found that the five ICF categories that showed the strongest effect were plausible.

Conclusions: Graphical Models are a flexible tool and lend themselves for a wide range of applications. In particular, studies involving ICF data seem to be suited for analysis using graphical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831907PMC
http://dx.doi.org/10.1186/1471-2288-10-14DOI Listing

Publication Analysis

Top Keywords

graphical models
36
icf data
12
graphical
10
models
9
understanding human
8
human functioning
8
functioning disability
8
dimension reduction
8
icf categories
8
functioning
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!