Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To investigate radiation-induced bystander responses and to determine the role of gap junction intercellular communication and the radiation environment in propagating this response.
Materials And Methods: We used medium transfer and targeted irradiation to examine radiation-induced bystander effects in primary human fibroblast (AG01522) and human colon carcinoma (RKO36) cells. We examined the effect of variables such as gap junction intercellular communication, linear energy transfer (LET), and the role of the radiation environment in non-targeted responses. Endpoints included clonogenic survival, micronucleus formation and foci formation at histone 2AX over doses ranging from 10-100 cGy.
Results: The results showed no evidence of a low-LET radiation-induced bystander response for the endpoints of clonogenic survival and induction of DNA damage. Nor did we see evidence of a high-LET, Fe ion radiation (1 GeV/n) induced bystander effect. However, direct comparison for 3.2 MeV alpha-particle exposures showed a statistically significant medium transfer bystander effect for this high-LET radiation.
Conclusions: From our results, it is evident that there are many confounding factors influencing bystander responses as reported in the literature. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09553000903419957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!