A high flow rate (300 L min(-1)) multicapillary denuder was designed to collect trace atmospheric semivolatile organic compounds (SOCs). The denuder is coated with a reusable, polydimethylsiloxane stationary phase as a nonselective absorbent for SOCs. A solvent-free thermal desorption method was developed, including sample cleanup, that is selective for nonpolar SOCs, and has low consumables cost per sample. The entire sample is transferred into the gas chromatograph to minimize the sampling time required to collect detectable analyte mass. Trace concentrations (0.1-100 pg m(-3)) of polychlorinated biphenyls and hexachlorobenzene were measured in the atmosphere near Lake Superior in sample times of 3.2-6.2 h. Overall method precision was determined using field duplicates and compared to the conventional high-volume sampler method. Method precision (coefficient of variation) of 16% was found for the high-flow denuder compared to 21% for the high-volume method. The relative difference between the two methods was 25%, with the high-flow denuder method giving generally lower concentrations. The high-flow denuder is an alternative to high-volume or passive samplers when it is desirable to separate gaseous from particle-associated SOCs upstream of a filter. The method is advantageous for studies that require high temporal resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es903002k | DOI Listing |
Environ Sci Technol
October 2015
National Centre for Atmospheric Science Division of Environmental Health & Risk Management School of Geography, Earth & Environmental Sciences University of Birmingham Edgbaston, Birmingham B15 2TT United Kingdom.
The design and performance of a multiparallel plate denuder able to operate at low and high-flow (3-30 L/min) for the collection of polycyclic aromatic hydrocarbon (PAH) vapor is described. The denuder, in combination with a micro orifice uniform deposit impactor (MOUDI) was used to assess processes of artifact formation in MOUDIs used with and without an upstream denuder. Duplicate sampling trains with an upstream denuder showed good repeatability of the measured gas and particle-phase concentrations and low breakthrough in the denuder (3.
View Article and Find Full Text PDFInhal Toxicol
November 2011
Department of Environmental Health, Harvard School of Public Health, 401 Park Drive, Landmark Center West, Boston, MA 02215, USA.
Diffusion denuders have been commonly used to remove trace gases from an aerosol (mixture of gases and particles), while allowing the particles to remain suspended in air. We present the design and evaluation of a high-flow (16.7 L min⁻¹) countercurrent parallel-plate membrane diffusion denuder that has high removal efficiencies for both non-reactive gases such as carbon monoxide (89%), as well as volatile organic compounds (80-85%) from an automobile exhaust.
View Article and Find Full Text PDFEnviron Sci Technol
March 2010
Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, Michigan 49931, USA.
A high flow rate (300 L min(-1)) multicapillary denuder was designed to collect trace atmospheric semivolatile organic compounds (SOCs). The denuder is coated with a reusable, polydimethylsiloxane stationary phase as a nonselective absorbent for SOCs. A solvent-free thermal desorption method was developed, including sample cleanup, that is selective for nonpolar SOCs, and has low consumables cost per sample.
View Article and Find Full Text PDFJ Chromatogr A
January 2010
Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA.
A modeling approach is presented to predict the sorptive sampling collection efficiency of gaseous semivolatile organic compounds (SOCs) and the artifact caused by collection of particle-associated SOCs in multicapillary diffusion denuders containing polydimethylsiloxane (PDMS) stationary phase. Approaches are presented to estimate the equilibrium PDMS-gas partition coefficient (K(pdms)) from a solvation parameter model for any compound, and, for nonpolar compounds, from the octanol-air partition coefficient (K(oa)) if measured K(pdms) values are not available. These estimated K(pdms) values are compared with K(pdms) measured by gas chromatography.
View Article and Find Full Text PDFJ Chromatogr A
January 2007
Civil & Environmental Engineering Department, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA.
A novel method for collection and analysis of vapor-phase semivolatile organic compounds (SOCs) in ambient air is presented. The method utilizes thermal desorption of SOCs trapped in diffusion denuders coupled with cryogenic preconcentration on Tenax-TA and analysis by high resolution gas chromatography (GC)-electron-capture detection (ECD). The sampling and analysis methods employ custom-fabricated multicapillary diffusion denuders, a hot gas spike (HGS) apparatus to load known quantities of thermally stable standards into diffusion denuders prior to sample collection, a custom-fabricated oven to thermally desorb SOCs from the diffusion denuder, and a programmable temperature vaporization (PTV) inlet containing a liner packed with Tenax-TA for effective preconcentration of the analytes and water management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!