Fasting promotes the expression of SIRT1, an NAD+ -dependent protein deacetylase, via activation of PPARalpha in mice.

Mol Cell Biochem

Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.

Published: June 2010

Calorie restriction (CR) extends lifespans in a wide variety of species. CR induces an increase in the NAD(+)/NADH ratio in cells and results in activation of SIRT1, an NAD(+)-dependent protein deacetylase that is thought to be a metabolic master switch linked to the modulation of lifespans. CR also affects the expression of peroxisome proliferator-activated receptors (PPARs). The three subtypes, PPARalpha, PPARgamma, and PPARbeta/delta, are expressed in multiple organs. They regulate different physiological functions such as energy metabolism, insulin action and inflammation, and apparently act as important regulators of longevity and aging. SIRT1 has been reported to repress the PPARgamma by docking with its co-factors and to promote fat mobilization. However, the correlation between SIRT1 and other PPARs is not fully understood. CR initially induces a fasting-like response. In this study, we investigated how SIRT1 and PPARalpha correlate in the fasting-induced anti-aging pathways. A 24-h fasting in mice increased mRNA and protein expression of both SIRT1 and PPARalpha in the livers, where the NAD(+) levels increased with increasing nicotinamide phosphoribosyltransferase (NAMPT) activity in the NAD(+) salvage pathway. Treatment of Hepa1-6 cells in a low glucose medium conditions with NAD(+) or NADH showed that the mRNA expression of both SIRT1 and PPARalpha can be enhanced by addition of NAD(+), and decreased by increasing NADH levels. The cell experiments using SIRT1 antagonists and a PPARalpha agonist suggested that PPARalpha is a key molecule located upstream from SIRT1, and has a role in regulating SIRT1 gene expression in fasting-induced anti-aging pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-010-0391-zDOI Listing

Publication Analysis

Top Keywords

expression sirt1
12
sirt1 pparalpha
12
sirt1
10
protein deacetylase
8
fasting-induced anti-aging
8
anti-aging pathways
8
pparalpha
7
expression
5
nad+
5
fasting promotes
4

Similar Publications

Primary components of MCT ketogenic diet are detrimental to bone loss associated with accelerated aging and age-related neurotoxicity in mice.

Bone

December 2024

Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India. Electronic address:

Medium chained triglycerides (MCT) ketogenic diet is being extensively investigated for its neuroprotective effects against adverse effects associated with aging and neurodegenerative disorders. Aging is a common risk factor for the development of both osteoporosis and neurological disorders. Hence, suppression of aging and age-related neurodegeneration might contribute to delaying skeletal aging.

View Article and Find Full Text PDF

ADSCs-derived exosomes suppress macrophage ferroptosis via the SIRT1/NRF2 signaling axis to alleviate acute lung injury in sepsis.

Int Immunopharmacol

December 2024

Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. Electronic address:

Acute lung injury being one of the earliest and most severe complications during sepsis and macrophages play a key role in this process. To investigate the regulatory effects and potential mechanisms of adipose mesenchymal stem cell derived-exosomes (ADSC-exo) on macrophages and septic mice, ADSCs-exo was administrated to both LPS-induced macrophage and cecal ligation and puncture (CLP) induced sepsis mice. ADSCs-exo was confirmed to inhibit M1 polarization of macrophages and to reduce excessive inflammation.

View Article and Find Full Text PDF

Ferroptosis is regarded as a promising cancer therapeutic target. As a major bioactive compound from traditional Chinese medicine (TCM) herb Aiton, oxymatrine (OMT) can depress inflammatory factors, reduce iron deposition, and suppress the hub gene or protein expression involved in ferroptosis and inflammation. Additionally, OMT can control collagen deposition in the liver and has a therapeutic effect on liver cancer.

View Article and Find Full Text PDF

SIRT1 Activation Suppresses Corneal Endothelial-Mesenchymal Transition via the TGF-β/Smad2/3 Pathway.

Curr Issues Mol Biol

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Endothelial-mesenchymal transition (EnMT) is the transversion of endothelial cells to mesenchymal cells under certain physiological or pathological conditions. When EnMT occurs in the corneal endothelium, corneal endothelial cells (CECs) lose their normal function and thus cannot maintain corneal clarity. Studies have shown that the mechanism of EnMT in CECs involves the transforming growth factor-β (TGF-β) signaling pathway, and one of the important inhibitors of the TGF-β/Smad2/3 pathway is sirtuin-1 (SIRT1).

View Article and Find Full Text PDF

Introduction: With the increasing prevalence of hypertension, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Jiangya Tongluo decoction (JYTL), a recognized prescription in traditional Chinese medicine (TCM), is commonly used to calm an overactive liver and reduce excess yang, while also promoting blood flow to alleviate obstructions in the meridians. Previous research has indicated that JYTL may help mitigate kidney damage caused by hypertension; however, the underlying mechanisms have not been thoroughly assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!