Modeling of connective tissues often includes collagen fibers explicitly as one of the components. These fibers can be oriented in many directions; therefore, several studies have considered statistical distributions to describe the fiber arrangement. One approach to formulate a constitutive framework for distributed fibers is to express the mechanical parameters, such as strain energy and stresses, in terms of angular integrals. These integrals represent the addition of the contribution of infinitesimal fractions of fibers oriented in a given direction. This approach leads to accurate results; however, it requires lengthy calculations. Recently, the use of generalized structure tensors has been proposed to represent the angular distribution in the constitutive equations of the fibers. Although this formulation is much simpler and fewer calculations are required, such structure tensors can only be used when all the fibers are in tension and the angular distribution is small. However, the amount of error introduced in these cases of non-tensile fiber loading and large angular distributions have not been quantified. Therefore, the objective of this study is to determine the range of values of angular distribution for which acceptable differences (less than 10%) between these two formulations are obtained. It was found, analytically and numerically, that both formulations are equivalent for planar distributions under equal-biaxial stretch. The comparison also showed, for other loading conditions, that the differences decrease when the fiber distribution is very small. Differences of less than 10% were usually obtained when the fiber distribution was very low (κ ≈ 0.03; κ ranges between 0 and 1/3, for aligned and isotropic distributed fibers, respectively). This range of angular distribution greatly limits the types of tissue that can be accurately analyzed using generalized structure tensors. It is expected that the results from this study guide the selection of a proper approach to analyze a particular tissue under a particular loading condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917498PMC
http://dx.doi.org/10.1007/s10237-010-0194-xDOI Listing

Publication Analysis

Top Keywords

angular distribution
20
structure tensors
12
fibers oriented
8
distributed fibers
8
generalized structure
8
distribution small
8
differences 10%
8
fiber distribution
8
angular
7
distribution
7

Similar Publications

Neural connectivity underlying core language functions.

Brain Lang

January 2025

Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA; Neurology Service, North Florida/South GeorgiaUSA Veterans Health System and Department of Neurology, University of Florida, Gainesville, FL 32608, USA. Electronic address:

Introduction: Although many white matter tracts underlying language functions have been identified, even in aggregate they do not provide a sufficiently detailed and expansive picture to enable us to fully understand the computational processes that might underly language production and comprehension. We employed diffusion tensor tractography (DTT) with a tensor distribution model to more extensively explore the white matter tracts supporting core language functions. Our study was guided by hypotheses stemming largely from the aphasia literature.

View Article and Find Full Text PDF

In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.

View Article and Find Full Text PDF

To observe the stability of vertical dimension of occlusion (VDO) and mandibular position in full-mouth occlusal reconstruction subjects by means of digital occlusal analysis. Six subjects who had completed full-mouth occlusal reconstruction by intraoral functional generated path technique for more than three years in the Department of Prosthodontics, Peking University School and Hospital of Stomatology were enrolled for follow-up observation, all six patients were male, with an age of (53.6±8.

View Article and Find Full Text PDF

Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) breast therapies, the focal location must be characterized to guide successful treatment. Focal characterization is difficult because heterogeneous breast tissues introduce phase aberrations that blur and shift the focus and traditional guidance methods do not work in adipose tissues. The purpose of this work is to evaluate numerical simulations of MRgFUS that predict the focal location.

View Article and Find Full Text PDF

Large-scale quantum networks require dynamic and resource-efficient solutions to reduce system complexity with maintained security and performance to support growing number of users over large distances. Current encoding schemes including time-bin, polarization, and orbital angular momentum, suffer from the lack of reconfigurability and thus scalability issues. Here, we demonstrate the first-time implementation of frequency-bin-encoded entanglement-based quantum key distribution and a reconfigurable distribution of entanglement using frequency-bin encoding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!