Epidemiology and imaging of the subchondral bone in articular cartilage repair.

Knee Surg Sports Traumatol Arthrosc

Unité d'orthopédie et traumatologie du sport, Service de chirurgie orthopédique et traumatologie de l'appareil moteur, University Hospital of Geneva, Genève, Switzerland.

Published: April 2010

AI Article Synopsis

Article Abstract

Articular cartilage and the subchondral bone act as a functional unit. Following trauma, osteochondritis dissecans, osteonecrosis or osteoarthritis, this intimate connection may become disrupted. Osteochondral defects-the type of defects that extend into the subchondral bone-account for about 5% of all articular cartilage lesions. They are very often caused by trauma, in about one-third of the cases by osteoarthritis and rarely by osteochondritis dissecans. Osteochondral defects are predominantly located on the medial femoral condyle and also on the patella. Frequently, they are associated with lesions of the menisci or the anterior cruciate ligament. Because of the close relationship between the articular cartilage and the subchondral bone, imaging of cartilage defects or cartilage repair should also focus on the subchondral bone. Magnetic resonance imaging is currently considered to be the key modality for the evaluation of cartilage and underlying subchondral bone. However, the choice of imaging technique also depends on the nature of the disease that caused the subchondral bone lesion. For example, radiography is still the golden standard for imaging features of osteoarthritis. Bone scintigraphy is one of the most valuable techniques for early diagnosis of spontaneous osteonecrosis about the knee. A CT scan is a useful technique to rule out a possible depression of the subchondral bone plate, whereas a CT arthrography is highly accurate to evaluate the stability of the osteochondral fragment in osteochondritis dissecans. Particularly for the problem of subchondral bone lesions, image evaluation methods need to be refined for adequate and reproducible analysis. This article highlights recent studies on the epidemiology and imaging of the subchondral bone, with an emphasis on magnetic resonance imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-010-1053-0DOI Listing

Publication Analysis

Top Keywords

subchondral bone
36
articular cartilage
16
osteochondritis dissecans
12
subchondral
10
bone
10
epidemiology imaging
8
imaging subchondral
8
cartilage repair
8
cartilage subchondral
8
magnetic resonance
8

Similar Publications

Background: Autologous osteochondral transplantation (AOT) is an option to treat large osteochondral lesions of the talus (OLTs), accompanying subchondral cyst, and previous unsuccessful bone marrow stimulation (BMS) procedures. Although there is extensive literature on the outcomes of surgical interventions for medial osteochondral lesions, research focusing on lateral lesions remains limited. This article presents the intermediate-term clinical and radiologic outcomes following AOT for lateral OLTs.

View Article and Find Full Text PDF

Purpose: Subchondral bone marrow lesions (BMLs) are present in a wide range of pathologies with different prognoses. Thus, a careful diagnosis is mandatory to address them with the proper treatment. The aim of this review was to examine BMLs aetiology and their relationship with biomechanical and biological factors, to identify BMLs and help clinicians to properly recognize and treat each of these common alterations.

View Article and Find Full Text PDF

Fetal Cartilage Progenitor Cells in the Repair of Osteochondral Defects.

JB JS Open Access

January 2025

Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky.

Background: Therapies for cartilage restoration are of great interest, but current options provide limited results. In salamanders, interzone (IZN) tissue can regenerate large joint lesions. The mammalian homolog to this tissue exists during fetal development and exhibits remarkable chondrogenesis in vitro.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Biomimetic bone cartilage scaffolds based on trilayer methacrylated hydroxyapatite/GelMA composites for full-thickness osteochondral regeneration.

Int J Biol Macromol

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:

Since cartilage injury is often accompanied by subchondral bone damage, conventional single-phase materials cannot accurately simulate the osteochondral structure or repair osteochondral injury. In this work, a gradient gelatin-methacryloyl (GelMA) hydrogel scaffold was constructed by a layer-by-layer stacking method to realize full-thickness regeneration of cartilage, calcified cartilage and subchondral bone. Of note, to surmount the inadequate mechanical property of GelMA hydrogel, nanohydroxyapatite (nHA) was incorporated and further functionalized with hydroxyethyl methacrylate (nHA-hydroxyethyl methacrylate, nHAMA) to enhance the interfacial adhesion with the hydrogel, resulting in better mechanical strength akin to human bone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!