Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature08747 | DOI Listing |
PLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFNew Phytol
January 2025
Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, E-45071, Toledo, Spain.
J Exp Bot
January 2025
Noble Research Institute, Ardmore, OK 73401, USA.
Translating biological knowledge from Arabidopsis to crop species is important to advance agriculture and secure food production in the face of dwindling fertilizer resources and biotic and abiotic stresses. However, it is often not trivial to identify functional homologs (orthologs) of Arabidopsis genes in crops. Combining sequence and expression data can improve the correct prediction of orthologs.
View Article and Find Full Text PDFProtoplasma
December 2024
Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia.
Phosphorus (P) is a macronutrient that plays a crucial role in critical plant functions. Phosphate transporters (PHTs) ensure the acquisition and translocation of Pi in the plant, thereby playing a key role in maintaining normal plant growth under Pi deficiency conditions. In Brachypodium distachyon, the grass model system, the function of individual PHT genes, remains largely unknown.
View Article and Find Full Text PDFPlant J
December 2024
Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, 99164, USA.
Root systems are uniquely adapted to fluctuations in external nutrient availability. In response to suboptimal nitrogen conditions, plants adopt a root foraging strategy that favors a deeper and more branched root architecture, enabling them to explore and acquire soil resources. This response is gradually suppressed as nitrogen conditions improve.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!