Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder.

Neuropsychopharmacology

Waggoner Center for Alcohol and Addiction Research and the College of Pharmacy, University of Texas, 1 University Station, Austin, TX, USA.

Published: May 2010

Severe stress or trauma can cause permanent changes in brain circuitry, leading to dysregulation of fear responses and the development of posttraumatic stress disorder (PTSD). To date, little is known about the molecular mechanisms underlying stress-induced long-term plasticity in fear circuits. We addressed this question by using global gene expression profiling in an animal model of PTSD, stress-enhanced fear learning (SEFL). A total of 15 footshocks were used to induce SEFL and the volatile anesthetic isoflurane was used to suppress the behavioral effects of stress. Gene expression in lateral/basolateral amygdala was measured using microarrays at 3 weeks after the exposure to different combinations of shock and isoflurane. Shock produced robust effects on amygdalar transcriptome and isoflurane blocked or reversed many of the stress-induced changes. We used a modular approach to molecular profiles of shock and isoflurane and built a network of regulated genes, functional categories, and cell types that represent a mechanistic foundation of perturbation-induced plasticity in the amygdala. This analysis partitioned perturbation-induced changes in gene expression into neuron- and astrocyte-specific changes, highlighting a previously underappreciated role of astroglia in amygdalar plasticity. Many neuron-enriched genes were highly correlated with astrocyte-enriched genes, suggesting coordinated transcriptional responses to environmental challenges in these cell types. Several individual genes were validated using RT-PCR and behavioral pharmacology. This study is the first to propose specific cellular and molecular mechanisms underlying SEFL, an animal model of PTSD, and to nominate novel molecular and cellular targets with potential for therapeutic intervention in PTSD, including glycine and neuropeptide systems, chromatin remodeling, and gliotransmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040562PMC
http://dx.doi.org/10.1038/npp.2010.10DOI Listing

Publication Analysis

Top Keywords

mechanisms underlying
12
gene expression
12
stress-enhanced fear
8
fear learning
8
posttraumatic stress
8
stress disorder
8
molecular mechanisms
8
animal model
8
model ptsd
8
shock isoflurane
8

Similar Publications

Purpose Of Review: This review aims to explore the complex interplay between atrial functional mitral regurgitation (AFMR), atrial fibrillation (AF), and heart failure with preserved ejection fraction (HFpEF). The goal is to define these conditions, examine their underlying mechanisms, and discuss treatment perspectives, particularly addressing diagnostic challenges.

Recent Findings: Recent research highlights the rising prevalence of AFMR, now accounting for nearly one-third of significant mitral regurgitation cases.

View Article and Find Full Text PDF

Improving Understanding of Fexofenadine Pharmacokinetics to Assess Pgp Phenotypic Activity in Older Adult Patients Using Population Pharmacokinetic Modeling.

Clin Pharmacokinet

January 2025

Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care Department, Geneva University Hospitals, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.

Background And Objective: Fexofenadine is commonly used as a probe substrate to assess P-glycoprotein (Pgp) activity. While its use in healthy volunteers is well documented, data in older adult and polymorbid patients are lacking. Age- and disease-related physiological changes are expected to affect the pharmacokinetics of fexofenadine.

View Article and Find Full Text PDF

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Revealing Toxicological Mechanisms of Small Molecules Using Chemical Biology.

Chem Res Toxicol

January 2025

Department of Chemistry, University of California, Riverside, California 92521, United States.

Defining the underlying toxicological mechanisms of various small molecules is of utmost importance in understanding the pathogenesis of chemical exposure-related human diseases and developing safe and effective therapeutics. Herein, we discuss the toxicological mechanisms of different small molecules utilizing the different tools of chemical biology.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 receptor agonists (GLP1RAs) are widely used in manageing type 2 diabetes mellitus and weight control. Their potential in treating ageing-related diseases has been gaining attention in recent years. However, the long-term effects of GLP1RAs on these diseases have yet to be fully revealed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!