Somatostatin analogues (SAs) are potential anticancer agents. This study was designed to investigate the expression of somatostatin receptors (SSTRs) in melanoma cells and the effect of two SAs on cell proliferation and viability. Eighteen primary and metastatic human cutaneous melanoma cell lines were treated with octreotide and SOM230. Expression of SSTR1, SSTR2, SSTR3 and SSTR5 was assessed by real-time polymerase chain reaction. Proliferation, viability and cell death were assessed using standard assays. Inhibition was modelled by mixed-effect regression. Melanoma cells expressed one or more SSTR. Both SAs inhibited proliferation of most melanoma cell lines, but inhibition was < 50%. Neither SA affected cell viability or induced cell death. The results suggest that melanoma cell lines express SSTRs. The SAs investigated, under the conditions used in this study, did not, however, significantly inhibit melanoma growth or induce cell death. Novel SAs, combination therapy with SAs and their anti-angiogenic properties should be further investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/147323000903700617 | DOI Listing |
Melanoma Manag
December 2024
Department of Plastic Surgery, Faculty of Medicine, University of Aleppo, Aleppo, Syria.
Subungual melanoma accounts for 1.9% of cutaneous melanomas. Amelanotic cases, comprising 15-25%, poses a significant diagnostic challenge because it can be misdiagnosed as other traumatic, inflammatory, or neoplastic conditions.
View Article and Find Full Text PDFPigment Cell Melanoma Res
January 2025
Department of Dermatology, Faculty of Medicine, Cairo University, Giza, Egypt.
Vitiligo pathogenesis is complex. There is some evidence in support of the neurohormonal pathways involved. Although considered a nonpruritic condition, some patients may experience itching, which can occur ahead of the appearance of the patches.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States.
Extracellular vesicles (EVs) are generated in all cells. Systemic administration of allogenic EVs derived from epithelial and mesenchymal cells has been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cell-derived EVs can be modified to acquire the capacity to induce an immune response, we engineered 293T EVs to harbor the immunomodulatory molecules CD80, OX40L, and PD-L1.
View Article and Find Full Text PDFCurr Opin Oncol
January 2025
San Roque Hospital, Lanzarote, Spain.
Purpose Of Review: Recent research underscores the significant influence of the skin and gut microbiota on melanoma and nonmelanoma skin cancer (NMSC) development and treatment outcomes. This review aims to synthesize current findings on how microbiota modulates immune responses, particularly enhancing the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs).
Recent Findings: The microbiota's impact on skin cancer is multifaceted, involving immune modulation, inflammation, and metabolic interactions.
ACS Appl Mater Interfaces
January 2025
School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!