Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pd/Au bimetallic alloys catalyze many important reactions ranging from the synthesis of vinyl acetate and hydrogen peroxide to the oxidation of carbon monoxide and trimerization of acetylene. It is known that the atomic-scale geometry of these alloys can dramatically affect both their reactivity and selectivity. However, there is a distinct lack of experimental characterization and quantification of ligand and ensemble effects in this system. Low-temperature, ultrahigh vacuum scanning tunneling microscopy is used to investigate the atomic-scale geometry of Pd/Au111 near-surface alloys and to spectroscopically probe their local electronic structure. The results reveal that the herringbone reconstruction of Au111 provides entry sites for the incorporation of Pd atoms in the Au surface and that the degree of mixing is dictated by the surface temperature. At catalytically relevant temperatures the distribution of low coverages of Pd in the alloy is random, except for a lack of nearest neighbor pairs in both the surface and subsurface sites. Scanning tunneling spectroscopy is used to examine the electronic structure of the individual Pd atoms in surface and subsurface sites. This work reveals that in both surface and subsurface locations, Pd atoms display a very similar electronic structure to the surrounding Au atoms. However, individual surface and subsurface Pd atoms are depleted of charge in a very narrow region at the band edge of the Au surface state. dI/dV images of the phenomena demonstrate the spatial extent of this electronic perturbation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn901390y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!