Atmospheric pressure scanning transmission electron microscopy.

Nano Lett

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

Published: March 2010

Scanning transmission electron microscope (STEM) images of gold nanoparticles at atmospheric pressure have been recorded through a 0.36 mm thick mixture of CO, O2, and He. This was accomplished using a reaction cell consisting of two electron-transparent silicon nitride membranes. Gold nanoparticles of a full width at half-maximum diameter of 1.0 nm were visible above the background noise, and the achieved edge resolution was 0.4 nm in accordance with calculations of the beam broadening.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl904254gDOI Listing

Publication Analysis

Top Keywords

atmospheric pressure
8
scanning transmission
8
transmission electron
8
gold nanoparticles
8
pressure scanning
4
electron microscopy
4
microscopy scanning
4
electron microscope
4
microscope stem
4
stem images
4

Similar Publications

As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types.

View Article and Find Full Text PDF

Integrated metabolomics and mass spectrometry imaging analysis reveal the efficacy and mechanism of Huangkui capsule on type 2 diabetic nephropathy.

Phytomedicine

January 2025

State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:

Background: Huangkui capsule (HKC), a Chinese patent medicine, is clinically used for treating diabetic nephropathy. However, the core disease-specific biomarkers and targets of type 2 diabetic nephropathy (T2DN) and the therapeutic mechanism of HKC are not fully elucidated.

Purpose: This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HKC for T2DN.

View Article and Find Full Text PDF

This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments on the germination, plant growth, and content of secondary metabolites, namely steviol glycosides (SGs), rebaudioside A (RebA), and stevioside (Stev), as well as phenolic compounds and flavonoids. Seeds were treated for 2, 5, and 7 min with CP or DBD and 5 min with vacuum six days before sowing.

View Article and Find Full Text PDF

The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.

View Article and Find Full Text PDF

Resilience of to Simulated Atmospheric Gas Compositions of Mars, Jupiter, and Titan.

Life (Basel)

January 2025

Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.

This study investigates the resilience of the unicellular green microalga to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism's photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!