Lignocellulose is a promising starting material for bioproducts, ranging from biofuels to specialty chemicals; however, lignocellulose is resistant to enzymatic degradation. Overcoming this resistance is therefore an important priority for the development of the lignocellulosic biorefinery concept. In this work, 1-ethyl-3-methylimidazolium acetate ([emim]Ac) was selected from six ionic liquid candidates for the extraction of lignin from triticale and wheat straw and flax shives. Lignin extractability, composition, and cellulose enzymatic digestibility of the residues after extraction by [emim]Ac were determined at various temperatures (70-150 degrees C) and time intervals (0.5-24 h). The optimal result (52.7% of acid insoluble lignin in triticale straw) was obtained at 150 degrees C after 90 min, yielding >95% cellulose digestibility of the residue. Little cellulose was extracted, and the extracted lignin was recovered by acid precipitation. Selective extraction of lignin by ionic liquids is a potentially efficient technique for the comprehensive utilization of lignocellulose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf903616y | DOI Listing |
Langmuir
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan Normal University School of Chemistry and Chemical Engineering, Chemistry, CHINA.
ADP-ribosylation is a complex post-translational modification involved in key physiological processes and associated with various health and disease states. The growing interest in ADP-ribosylation necessitates straightforward and efficient synthetic methods for the preparation of ADP-ribosylated peptides/proteins. In this study, we report a facile reaction between nicotinamide adenine dinucleotide (NAD+) and alcohols promoted by a combination of ionic liquids, yielding up to 94% with α:β ratios ranging from 88:12 to 99:1 and a switchable configuration selectivity.
View Article and Find Full Text PDFLangmuir
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
Spin glass (SG), in which the spins are glassy, has attracted broad attention for theoretical study and prospective application. SG states are generally related to disordered or frustrated spin systems, which are usually observed in inorganic magnets. Herein, supramolecular magnetic ionic liquid (TMTBDI[FeCl]) self-assemblies are prepared by solution self-assembly via hydrophobic and π-π stacking interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!