Evidence for weak protein binding of commercial extracellular gadolinium contrast agents.

Magn Reson Med

Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California, USA.

Published: March 2010

It is widely assumed that commercial extracellular gadolinium-based contrast agents do not bind to proteins. Here, nuclear magnetic relaxation dispersion was used to characterize the interaction between the contrast agents gadodiamide and gadopentetate dimeglumine and the proteins human serum albumin, chicken egg white lysozyme, egg white proteins, or milk proteins. In all cases, contrast agent relaxivity was increased at all field strengths measured (0.0002 to 1.4 T) when protein was added. A distinct peak in relaxivity was observed between 0.5 and 0.7 T that is consistent with fractional protein binding and that could not be attributed to changes in solution viscosity. This peak was observed for gadodiamide with all four protein solutions and for gadopentetate dimeglumine with lysozyme, human serum albumin, and milk proteins. Protein binding was both contrast agent and protein dependent. For gadodiamide, the highest affinity was to egg white and milk proteins, while gadopentetate dimeglumine interacted most strongly with lysozyme. Protein binding was estimated at 30-40% for a 0.7 mmol/kg solution of gadodiamide in egg white or milk proteins. These results have implications for the accurate determination of contrast agent concentration in vivo. Weak protein binding may be an additional discriminating factor in understanding differences in the toxicokinetics of contrast agents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.22214DOI Listing

Publication Analysis

Top Keywords

protein binding
20
contrast agents
16
egg white
16
milk proteins
16
gadopentetate dimeglumine
12
contrast agent
12
protein
8
weak protein
8
commercial extracellular
8
human serum
8

Similar Publications

Mapping the Protein Phosphatase 1 Interactome in Human Cytomegalovirus Infection.

Viruses

December 2024

Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.

Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations.

View Article and Find Full Text PDF

This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.

View Article and Find Full Text PDF

UBL5 and Its Role in Viral Infections.

Viruses

December 2024

Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China.

Unlike other ubiquitin-like family members, UBL5 is structurally and functionally atypical, and a novel role in various biological processes and diseases has been discovered. UBL5 can stabilize the structure of the spliceosome, can promote post-transcriptional processing, and has been implicated in both DNA damage repair and protein unfolding reactions, as well as cellular mechanisms that are frequently exploited by viruses for their own proliferation during viral infections. In addition, UBL5 can inhibit viral infection by binding to the non-structural protein 3 of rice stripe virus and mediating its degradation.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is an emerging, mosquito-borne arthritic alphavirus increasingly associated with severe neurological sequelae and long-term morbidity. However, there is limited understanding of the crucial host components involved in CHIKV replicase assembly complex formation, and thus virus replication and virulence-determining factors, within the central nervous system (CNS). Furthermore, the majority of CHIKV CNS studies focus on neuronal infection, even though astrocytes represent the main cerebral target.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!