The Sn/Sn(II) couple is studied in the room temperature ionic liquids N-butyl-N-methylpyrrolidinium dicyanamide, [C(4)mpyrr][N(CN)(2)] and N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr][NTf(2)] using cyclic voltammetry. The Sn(II) species is introduced into each of the ionic liquids by dissolving either SnCl(2) or Sn(CF(3)SO(3))(2). The diffusion coefficient of the Sn(II) species produced is found to vary with the ionic liquid, partly reflecting the difference in the viscosity of the two liquids, but also to vary with the Sn(II) salts used, indicating that different Sn(II) species may be present. The mechanism for the stripping of deposited tin is found to change with potential and also vary with the Sn(II) salt/ionic liquid combination used. In [C(4)mpyrr][N(CN)(2)] the mechanism for the tin stripping process is broadly similar for both of the Sn(II) salts used indicating that the morphology of the tin deposit is similar and that the stripping mechanism is largely independent of the Sn(II) salt anion. In [C(4)mpyrr][NTf(2)] a large difference was seen in the voltammetry of the different Sn(II) salts. Tafel analysis is used to show that the mechanism of the oxidation of Sn is sensitive to the solvent, the salt and the potential. The rate determining step was found to vary between the first electron transfer, the second electron transfer and a step likely involving reactions of a Sn(+) intermediate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b920217jDOI Listing

Publication Analysis

Top Keywords

ionic liquids
12
snii species
12
snii salts
12
cyclic voltammetry
8
sn/snii couple
8
room temperature
8
temperature ionic
8
liquids n-butyl-n-methylpyrrolidinium
8
n-butyl-n-methylpyrrolidinium dicyanamide
8
n-butyl-n-methylpyrrolidinium bistrifluoromethylsulfonylimide
8

Similar Publications

Surface active ionic liquids (SAILs), offer potential advantages for pharmaceutical applications. Given the low permeability of gabapentin, an antiepileptic drug, in the gastrointestinal tract as classified by the Biopharmaceutics Classification Systems (BCS), understanding the micellization behavior of SAILs is essential for developing effective drug delivery systems to improve gabapentin bioavailability. This study explores the micellization and thermophysical behavior of SAILs (2-hydroxyethyl)ammonium laurate [2-HEA][Lau], bis(2-hydroxyethyl)ammonium laurate [BHEA][Lau], and tris(2-hydroxyethyl)ammonium laurate [THEA][Lau] in the presence of aqueous gabapentin solution at varied temperatures through COSMO analysis, electrical conductivity and surface tension measurements.

View Article and Find Full Text PDF

We developed a facile one-pot method for fabricating physical gels consisting of ultrahigh molecular weight (UHMW) polymers and highly concentrated lithium salt electrolytes. We previously reported physical gels formed from the entanglement of UHMW polymers by radical polymerisation in aprotic ionic liquids. In this study, we found that the molecular weight of methacrylate polymers formed by radical polymerisation increased with the concentration of lithium salts in the organic solvents.

View Article and Find Full Text PDF

Recovering the remaining oil after primary and secondary extraction methods poses a significant challenge. Enhanced oil recovery (EOR) techniques, which involve injecting fluids into reservoirs, aim to increase recovery rates. Ionic liquids, known for their adaptability, are emerging as promising agents in EOR, improving oil displacement by reshaping fluid properties and interacting with reservoir rocks.

View Article and Find Full Text PDF

In this work, we investigate the development of polymer electrolytes for sodium batteries based on sulfonamide functional polymer nanoparticles (NaNPs). The synthesis of the polymer NaNPs is carried out by emulsion copolymerization of methyl methacrylate and sodium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of 50 nm, as shown by electron microscopy. Then, gel polymer electrolytes are prepared by mixing polymer NPs and different organic plasticizers including carbonates, glymes, sulfolanes and ionic liquids.

View Article and Find Full Text PDF

Nonstoichiometric pseudoprotic ionic liquids (NPPILs) are an emerging class of ionic liquids with interesting physical properties and intriguing prospects for technological applications. However, fundamental questions remain about the proton transfer equilibria that underlie their ionic character. We use a combination of nuclear magnetic resonance spectroscopy, infrared spectroscopy, and small-angle X-ray scattering to characterize the equilibria of trihexylamine/butyric acid and water/butyric acid mixtures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!