Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications.

Phys Chem Chem Phys

Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Chikusa-ku, 464-8603, Nagoya, Japan.

Published: February 2010

AI Article Synopsis

  • Gold nanoparticles (Au NPs) were created through sputter deposition in an ionic liquid, with their size varying from 2.6 to 4.8 nm after heat treatment.
  • These nanoparticles were immobilized on a glass substrate modified with a silane agent featuring an imidazole group, using a solution and subsequent heat treatment.
  • The films exhibited tunable optical properties and a strong localized surface plasmon resonance (LSPR), with enhanced photoluminescence in CdTe nanoparticles due to the electric field around the Au NPs.

Article Abstract

Gold (Au) nanoparticles were prepared by sputter deposition of Au metal in an ionic liquid (IL) of 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6). The size of Au nanoparticles was increased from 2.6 to 4.8 nm by heat treatment at 373 K. The nanoparticles uniformly dispersed in the IL were densely immobilized on a glass substrate surface modified with a silane coupling agent having an imidazole functional group by spreading the Au particle IL solution on the substrates, followed by heat treatment at 373 K. The optical property of the thus-obtained films was tunable by controlling the size of Au nanoparticles in the IL and the degree of immobilization. An intense localized surface plasmon resonance (LSPR) peak was observed in each Au particle film, and the wavelength of the LSPR peak could be controlled by changing the size of nanoparticles in the IL solution before immobilization. Photoexcitation of the LSPR peak caused enhancement of the photoluminescence of CdTe nanoparticles immobilized on Au nanoparticle films, probably due to the locally enhanced electric field formed around Au nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b914230dDOI Listing

Publication Analysis

Top Keywords

size nanoparticles
12
lspr peak
12
nanoparticles
8
gold nanoparticles
8
ionic liquid
8
heat treatment
8
treatment 373
8
size
4
size control
4
control immobilization
4

Similar Publications

Background: Understanding the size and surface charge (ζ-potential) of particles in the mixed micellar fraction produced by in vitro digestion is crucial to understand their cellular absorption and transport. The inconsistent presentation of micellar size data, often limited to average particle diameter, makes comparison of studies difficult. The present study aimed to assess different size data representations (mean particle diameter, relative intensity- or volume-weighted size distribution) to better understand physiological mixed micelle characteristics and to provide recommendations for size reporting and sample handling.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are the most advanced delivery system currently available for RNA therapeutics. Their development has accelerated since the success of Patisiran, the first siRNA-LNP therapeutic, and the mRNA vaccines that emerged during the COVID-19 pandemic. Designing LNPs with specific targeting, high potency, and minimal side effects is crucial for their successful clinical use.

View Article and Find Full Text PDF

Citri reticulate pericranium-derived extracellular vesicles exert antioxidant and anti-inflammatory properties and enhance the bioactivity of nobiletin by forming EVs-nob nanoparticles.

Front Cell Dev Biol

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.

Plant-driven extracellular vesicles (PEVs) have attracted significant interest due to their natural origin, remarkable bioactivity, and efficacy in drug encapsulation and target delivery. In our work, extracellular vesicles from Citri Reticulate Pericranium (CEVs) were isolated and investigated their physicochemical characteristics and biological activities. We identified the vesicle structures as regular, with a particle size of approximately 200 nm.

View Article and Find Full Text PDF

Nanoconfinements are utilized to program how polymers entangle and disentangle as chain clusters to engineer pseudo bonds with tunable strength, multivalency, and directionality. When amorphous polymers are grafted to nanoparticles that are one magnitude larger in size than individual polymers, programming grafted chain conformations can "synthesize" high-performance nanocomposites with moduli of ≈25GPa and a circular lifecycle without forming and/or breaking chemical bonds. These nanocomposites dissipate external stresses by disentangling and stretching grafted polymers up to ≈98% of their contour length, analogous to that of folded proteins; use both polymers and nanoparticles for load bearing; and exhibit a non-linear dependence on composition throughout the microscopic, nanoscopic, and single-particle levels.

View Article and Find Full Text PDF

Chitosan nano-formulation enhances stability and bactericidal activity of the lytic phage HK6.

BMC Biotechnol

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.

Background: Successful treatment of pathogenic bacteria like Enterobacter Cloacae with bacteriophage (phage) counteract some hindrance such as phage stability and immunological clearance. Our research is focused on the encapsulation of phage HK6 within chitosan nanoparticles.

Result: Encapsulation significantly improves stability, efficacy, and delivery of phages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!