Identification of the Leishmania major proteins LmjF07.0430, LmjF07.0440, and LmjF27.2440 as components of fatty acid synthase II.

J Biomed Biotechnol

Section of Physiology of Lipid Metabolism, Center for Physiology, Pathophysiology and Immunology, Institute of Physiology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.

Published: April 2010

Leishmania major causes leishmaniasis and is grouped within the Trypanosomatidae family, which also includes the etiologic agent for African sleeping sickness, Trypanosoma brucei. Previous studies on T. brucei showed that acyl carrier protein (ACP) of mitochondrial fatty acid synthase type 2 (FASII) plays a crucial role in parasite survival. Additionally, 3-oxoacyl-ACP synthase TbKASIII as well as TbHTD2 representing 3-hydroxyacyl-ACP dehydratase were also identified; however, 3-oxoacyl-ACP reductase TbKAR1 has hitherto evaded positive identification. Here, potential Leishmania FASII components LmjF07.0440 and LmjF07.0430 were revealed as 3-hydroxyacyl-ACP dehydratases LmHTD2-1 and LmHTD2-2, respectively, whereas LmjF27.2440 was identified as LmKAR1. These Leishmania proteins were ectopically expressed in Saccharomyces cerevisiae htd2Delta or oar1Delta respiratory deficient cells lacking the corresponding mitochondrial FASII enzymes Htd2p and Oar1p. Yeast mutants producing mitochondrially targeted versions of the parasite proteins resembled the self-complemented cells for respiratory growth. This is the first identification of a FASII-like 3-oxoacyl-ACP reductase from a kinetoplastid parasite.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817374PMC
http://dx.doi.org/10.1155/2009/950864DOI Listing

Publication Analysis

Top Keywords

leishmania major
8
fatty acid
8
acid synthase
8
3-oxoacyl-acp reductase
8
identification leishmania
4
major proteins
4
proteins lmjf070430
4
lmjf070430 lmjf070440
4
lmjf070440 lmjf272440
4
lmjf272440 components
4

Similar Publications

Leishmaniasis is reported as the second most common protozoonosis, with the highest prevalence and mortality rate. Among the Leishmania drug targets, Pteridine Reductase 1 of (PTR1) proved to be promising because Leishmania is auxotrophic for folates. Thus, this study employed a combination of ligand- and structure-based approaches to screen new benzothiazole compounds as PTR1 inhibitor candidates.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is a tropical disease that can cause chronic lesions and leave life-long scars, leading to social stigmatization and psychological disorders. Using growth factors and immunomodulatory agents that could accelerate wound healing and reduce the scar is highly demanded. Epidermal growth factor (EGF) plays an essential role in wound healing.

View Article and Find Full Text PDF

parts of the world (1,2). CL is characterized by significant clinical variability. An ulcerated nodule on the exposed parts of the body (corresponding to the parasite inoculation site by the vector insect) is the classic presentation.

View Article and Find Full Text PDF

Leishmaniasis is a neglected tropical disease caused by protozoans of the Leishmania genus, against which no effective treatment or control is available. Like other eukaryotes, parasite telomeres are maintained by telomerase, a ribonucleoprotein complex vital for genome stability. Its protein component, TERT (telomerase reverse transcriptase), presents four structural and functional domains, with the TEN (Telomerase N-terminal) and TRBD (Telomerase RNA-binding) located at its N-terminal.

View Article and Find Full Text PDF

Macrophages represent a fundamental component of the innate immune system that play a critical role in detecting and responding to pathogens as well as danger signals. Leishmania spp. infections lead to a notable alteration in macrophage metabolism, whereby infected cells display heightened energy metabolism that is linked to the integrity of host mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!