Context: Gene expression profiling may be useful in examining differences underlying age- and sex-specific outcomes in non-small cell lung cancer (NSCLC).

Objective: To describe clinically relevant differences in the underlying biology of NSCLC based on patient age and sex.

Design, Setting, And Patients: Retrospective analysis of 787 patients with predominantly early stage NSCLC performed at Duke University, Durham, North Carolina, from July 2008 to June 2009. Lung tumor samples with corresponding microarray and clinical data were used. All patients were divided into subgroups based on age (< 70 vs > or = 70 years old) or sex. Gene expression signatures representing oncogenic pathway activation and tumor biology/microenvironment status were applied to these samples to obtain patterns of activation/deregulation.

Main Outcome Measures: Patterns of oncogenic and molecular signaling pathway activation that are reproducible and correlate with 5-year recurrence-free patient survival.

Results: Low- and high-risk patient clusters/cohorts were identified with the longest and shortest 5-year recurrence-free survival, respectively, within the age and sex NSCLC subgroups. These cohorts of NSCLC demonstrate similar patterns of pathway activation. In patients younger than 70 years, high-risk patients, with the shortest recurrence-free survival, demonstrated increased activation of the Src (25% vs 6%; P<.001) and tumor necrosis factor (76% vs 42%; P<.001) pathways compared with low-risk patients. High-risk patients aged 70 years or older demonstrated increased activation of the wound healing (40% vs 24%; P = .02) and invasiveness (64% vs 20%; P<.001) pathways compared with low-risk patients. In women, high-risk patients demonstrated increased activation of the invasiveness (99% vs 2%; P<.001) and STAT3 (72% vs 35%; P<.001) pathways while high-risk men demonstrated increased activation of the STAT3 (87% vs 18%; P<.001), tumor necrosis factor (90% vs 46%; P<.001), EGFR (13% vs 2%; P = .003), and wound healing (50% vs 22%; P<.001) pathways. Multivariate analyses confirmed the independent clinical relevance of the pathway-based subphenotypes in women (hazard ratio [HR], 2.02; 95% confidence interval [CI], 1.34-3.03; P<.001) and patients younger than 70 years (HR, 1.83; 95% CI, 1.24-2.71; P = .003). All observations were reproducible in split sample analyses.

Conclusions: Among a cohort of patients with NSCLC, subgroups defined by oncogenic pathway activation profiles were associated with recurrence-free survival. These findings require validation in independent patient data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.2010.80DOI Listing

Publication Analysis

Top Keywords

pathway activation
12
age- sex-specific
8
non-small cell
8
cell lung
8
lung cancer
8
gene expression
8
differences underlying
8
5-year recurrence-free
8
recurrence-free survival
8
patients
5

Similar Publications

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Germination and False Germination Increase the Levels of Bioactive Steroidal Saponins in Oats.

J Agric Food Chem

January 2025

Laboratory for Functional Food and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States.

The health benefits of oats, particularly their enhanced nutritional and bioactive properties when sprouted, are well-documented. However, changes in steroidal saponins during germination and false germination are lacking. This study explored the influence of various temperatures (20, 25, and 30 °C) and durations (1, 3, 5, and 7 days) on the steroidal saponin profiles in both germinated and false-germinated oats and assessed their anti-inflammatory activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!