Progression to metastasis is the proximal cause of most cancer-related mortality. Yet much remains to be understood about what determines the spread of tumor cells. This paper describes a novel pathway in breast cancer that regulates epithelial-to-mesenchymal transition (EMT), motility, and invasiveness. We identify two transcription factors, nuclear factor 1-C2 (NF1-C2) and Forkhead box F1 (FoxF1), downstream of prolactin/nuclear Janus-activated kinase 2, with opposite effects on these processes. We show that NF1-C2 is lost during mammary tumor progression and is almost invariably absent from lymph node metastases. NF1-C2 levels in primary tumors correlate with better patient survival. Manipulation of NF1-C2 levels by expression of a stabilized version or using small interfering RNA showed that NF1-C2 counteracts EMT, motility, invasiveness, and tumor growth. FoxF1 was found to be a direct repressed target of NF1-C2. We provide the first evidence for a role of FoxF1 in cancer and in the regulation of EMT in cells of epithelial origin. Overexpression of FoxF1 was associated with a mesenchymal phenotype, increased invasiveness in vitro, and enhanced growth of breast carcinoma xenografts in nude mice. The relevance of these findings is strengthened by the correlation between FoxF1 expression and a mesenchymal phenoype in breast cancer cell isolates, consistent with the interpretation that FoxF1 promotes invasion and metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-09-1677 | DOI Listing |
RMD Open
December 2024
The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
In systemic lupus erythematosus (SLE), adaptive immunity is activated by the stimulation of innate immunity, leading to the development of autoreactive T cells and activation and differentiation of B cells. Cytokine signalling plays an essential role in the pathogenesis and progression of this disease. In particular, the differentiation and function of CD4+ T cell subsets, which play a central role in SLE pathology, are significantly altered by cytokine stimulation.
View Article and Find Full Text PDFChin Med
December 2024
Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China.
Background: To investigate the long term effects of ionizing radiation (IR) on hematopoietic stem/progenitor cells (HSPCs), immune tissues and cells, and the effects of Siwu decoction (SWD) on immune senescence mice.
Methods: C57BL/6 J mice were exposed to 6.0 Gy Co γ irradiation.
J Stomatol Oral Maxillofac Surg
November 2024
Department of Stomatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730 China. Electronic address:
Int Immunopharmacol
November 2024
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Institute for the Evaluation of the Efficacy and Safety of Chinese Medicines, Anhui Academy of Chinese Medicine, Hefei 230011, China. Electronic address:
The pathway of Janus-activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) (termed as JAK2/STAT3) plays an active role in stroke-related inflammation induced by ischemic stress. Gastrodin, the primary compound in Gastrodia elata Bl, has been identified for its notable neuroprotective effects and demonstrated to ameliorate cerebral ischemia-reperfusion but its exact mechanisms governing this defense are still unclear. This study aims to investigate whether gastrodin can regulate mitochondrial function via the JAK2/STAT3 pathway to limit cerebral ischemia-reperfusion.
View Article and Find Full Text PDFJ Can Assoc Gastroenterol
August 2024
Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.
Ulcerative colitis (UC) is a severe and debilitating illness that affects the quality of life and physical health of many Canadians. Given the dynamic and progressive nature of the disease, advanced therapies are required to support its long-term management. The emergence of small molecule therapies offers novel treatment options that target mechanisms central to the immunopathology of UC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!