Exosomes are nanovesicles originating from late endosomal compartments and secreted by most living cells in ex vivo cell culture conditions. The interest in exosomes was rekindled when B-cell and dendritic cell-derived exosomes were shown to mediate MHC-dependent immune responses. Despite limited understanding of exosome biogenesis and physiological relevance, accumulating evidence points to their bioactivity culminating in clinical applications in cancer. This review focuses on the preclinical studies exploiting the immunogenicity of dendritic cell-derived exosomes (Dex) and will elaborate on the past and future vaccination trials conducted using Dex strategy in melanoma and non-small cell lung cancer patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-09-3276 | DOI Listing |
Transplantation
January 2025
Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA.
Reduced dependence on antirejection agents, improved long-term allograft survival, and induction of operational tolerance remain major unmet needs in organ transplantation due to the limitations of current immunosuppressive therapies. To address this challenge, investigators are exploring the therapeutic potential of adoptively transferred host- or donor-derived regulatory immune cells. Extracellular vesicles of endosomal origin (exosomes) secreted by these cells seem to be important contributors to their immunoregulatory properties.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
The Ohio State University, Columbus, OH, United States.
Interleukin-12 (IL-12) is a potent NK cell-stimulating cytokine, but the presence of immunosuppressive myeloid cells such as myeloid-derived suppressor cells (MDSC) can inhibit IL 12-induced NK-cell cytotoxicity. Thus, we hypothesized that trabectedin, a myeloid cell-depleting agent, would improve the efficacy of IL-12 in triple-negative breast cancer (TNBC). In vitro treatment of healthy donor NK cells with trabectedin increased expression of the activation marker CD69 and mRNA expression of T BET (Tbx21), the cytotoxic ligands TRAIL (TNFSF10) and Fas ligand (FASLG) and the dendritic cell (DC)-recruiting chemokine lymphotactin (XCL1).
View Article and Find Full Text PDFOpen Life Sci
December 2024
Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
Cell polarity is crucial in neurons, characterized by distinct axonal and dendritic structures. Neurons generally have one long axon and multiple shorter dendrites, marked by specific microtubule (MT)-associated proteins, e.g.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Nowadays, extracellular vesicles (EVs) such as exosomes participate in cell-cell communication and gain attention as a new approach for cell-free therapies. Recently, various studies have demonstrated the therapeutic ability of exosomes, while the biological effect of human endometrial stem cell (hEnSC)-derived small EVs such as exosomes is still unclear. Herein, we obtained small EVs from hEnSC and indicated that these small EVs activate the vital cell signaling pathway and progress neurite outgrowth in PC-12 cell lines.
View Article and Find Full Text PDFJ Neurosci Methods
March 2025
Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan, Amsterdam 1081 HV, The Netherlands; Department of Child and Adolescent Psychiatry, Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam UMC location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands. Electronic address:
Background: Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused in vitro models.
New Method: In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!