Mammographic density for age and body mass index (BMI) is a heritable risk factor for breast cancer. We aimed to determine if recently identified common variants associated with small gradients in breast cancer risk are associated with mammographic density. We genotyped 497 monozygotic and 330 dizygotic twin pairs and 634 of their sisters from 903 families for 12 independent variants. Mammographic dense area, percent dense area, and nondense area were measured by three observers using a computer-thresholding technique. Associations with mammographic density measures adjusted for age, BMI, and other determinants were estimated (a) cross-sectionally using a multivariate normal model for pedigree analysis (P(x)), (b) between sibships, and (c) within sibships using orthogonal transformations of outcomes and exposures. A combined test of association (P(c)) was derived using the independent estimates from b and c. We tested if the distributions of P values across variants differed from the uniform distribution (P(u)). For dense area and percent dense area, the distributions of P(c) values were not uniform (both P(u) <0.007). Consistent with their breast cancer associations, rs3817198 (LSP1) and rs13281615 (8q) were associated with dense area and percent dense area (all P(x) and P(c) <0.05), and rs889312 (MAP3K1), rs2107425 (H19), and rs17468277 (CASP8) were marginally associated with dense area (some P(x) or P(c) <0.05). All associations were independent of menopausal status. At least two common breast cancer susceptibility variants are associated with mammographic density measures that predict breast cancer. These findings could help elucidate how those variants and mammographic density measures are associated with breast cancer susceptibility.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-09-3495DOI Listing

Publication Analysis

Top Keywords

mammographic density
16
dense area
16
breast cancer
12
variants associated
8
density measures
8
area percent
8
percent dense
8
distributions values
8
mammographic
5
area
5

Similar Publications

Fourier analysis of signal dependent noise images.

Sci Rep

December 2024

Cancer Epidemiology Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.

An archetype signal dependent noise (SDN) model is a component used in analyzing images or signals acquired from different technologies. This model-component may share properties with stationary normal white noise (WN). Measurements from WN images were used as standards for making comparisons with SDN in both the image domain (ID) and Fourier domain (FD).

View Article and Find Full Text PDF

Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding.

Physiol Plant

December 2024

Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.

As an important source of pollution in the papermaking process, the presence of lignin in poplar can seriously affect the quality and process of pulping. During lignin synthesis, Caffeoyl-CoA-O methyltransferase (CCoAOMT), as a specialized catalytic transferase, can effectively regulate the methylation of caffeoyl-coenzyme A (CCoA) to feruloyl-coenzyme A. Targeting CCoAOMT, this study investigated the substrate recognition mechanism and the possible reaction mechanism, the key residues of lignin binding were mutated and the lignin content was validated by deep convolutional neural-network model based on genome-wide prediction (DCNGP).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).

View Article and Find Full Text PDF

Equity in breast density notification in Australia: A focus group study exploring the impact and needs amongst culturally and linguistically diverse (CALD) women.

Patient Educ Couns

December 2024

Wiser Healthcare, Sydney School of Public Health, The University of Sydney, Sydney, New South Wales, Australia; The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council NSW, Sydney, New South Wales, Australia. Electronic address:

Objectives: Previous research suggests a one-size-fits-all approach to breast density notification may disadvantage culturally and linguistically diverse (CALD) women. This study aimed to qualitatively explore CALD women's understanding and views of breast density, attitudes towards health services access, acceptability of notification and preferences for breast density communication ahead of population-based notification in Australia.

Methods: Online focus groups were conducted with CALD women of breast screening age (40-74 years) who spoke one of the five languages with the lowest English proficiency in Australia (Korean, Mandarin, Cantonese, Vietnamese and Arabic).

View Article and Find Full Text PDF

Neoadjuvant Therapy (NT) has become the gold standard for treating locally advanced Breast Cancer (BC). The assessment of pathological response (pR) post-NT plays a crucial role in predicting long-term survival, with Contrast-Enhanced Magnetic Resonance Imaging (MRI) currently recognised as the preferred imaging modality for its evaluation. Traditional imaging techniques, such as Digital Mammography (DM) and Ultrasonography (US), encounter difficulties in post-NT assessments due to breast density, lesion changes, fibrosis, and molecular patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!