Dopamine neurotransmission controls motor and perseverative behavior, is mediated by protein phosphorylation, and may be perturbed in disorders of attention and hyperactivity. To assess the role of casein kinase I (CK1) in the regulation of dopamine signaling, we generated a genetically modified mouse line that overexpresses CK1delta (CK1delta OE) specifically in the forebrain. Overexpression was confirmed both at the mRNA and at the protein levels. Under basal conditions, CK1delta OE mice exhibited horizontal and vertical hyperactivity, reduced anxiety, and nesting behavior deficiencies. The CK1delta OE mice also presented paradoxical responses to dopamine receptor stimulation, showing hypoactivity following injection of d-amphetamine or methylphenidate, indicating that CK1 activity has a profound effect on dopamine signaling in vivo. Interestingly, CK1delta overexpression led to significantly reduced D1R and D2R dopamine receptor levels. All together, under basal conditions and in response to drug stimulation, the behavioral phenotype of CK1delta OE mice is reminiscent of the symptoms and drug responses observed in attention-deficit/hyperactivity disorder and therefore the CK1delta OE mice appear to be a model for this disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840146 | PMC |
http://dx.doi.org/10.1073/pnas.0915173107 | DOI Listing |
Acta Neuropathol Commun
December 2024
Department of Neurosciences, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA.
Hyperphosphorylated TDP-43 aggregates in the cytoplasm of motor neurons is a neuropathological signature of amyotrophic lateral sclerosis (ALS). These aggregates have been proposed to possess a toxic disease driving role in ALS pathogenesis and progression, however, the contribution of phosphorylation to TDP-43 aggregation and ALS disease mechanisms remains poorly understood. We've previously shown that CK1δ and CK1ε phosphorylate TDP-43 at disease relevant sites, and that genetic reduction and chemical inhibition could reduce phosphorylated TDP-43 (pTDP-43) levels in cellular models.
View Article and Find Full Text PDFNat Commun
November 2024
Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
Activating mutations in NRAS account for 15-20% of melanoma, yet effective anti-NRAS therapies are still lacking. In this study, we unveil the casein kinase 1δ (CK1δ) as an uncharacterized regulator of oncogenic NRAS mutations, specifically Q61R and Q61K, which are the most prevalent NRAS mutations in melanoma. The genetic ablation or pharmacological inhibition of CK1δ markedly destabilizes NRAS mutants and suppresses their oncogenic functions.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
Proc Natl Acad Sci U S A
October 2024
Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064.
Casein kinase 1δ (CK1δ) controls essential biological processes including circadian rhythms and wingless-related integration site (Wnt) signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ1 and δ2, are known to have very different effects on circadian rhythms.
View Article and Find Full Text PDFJ Nanobiotechnology
June 2024
Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China.
Diabetic kidney disease (DKD), a chronic kidney disease, is characterized by progressive fibrosis caused due to persistent hyperglycemia. The development of fibrosis in DKD determines the patient prognosis, but no particularly effective treatment. Here, small extracellular vesicles derived from mesenchymal stem cells (MSC-sEV) have been used to treat DKD fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!