AI Article Synopsis

  • FEN1 is suggested to be essential for the long patch base excision repair (LP-BER) subpathway, based on in vitro studies.
  • FEN1-deficient DT40 chicken cells show increased sensitivity to hydrogen peroxide (H2O2), indicating a deficiency in BER that affects cell survival.
  • Experiments demonstrate that while FEN1 null cells are deficient in LP-BER activity, they retain normal function in single-nucleotide BER, highlighting FEN1's specific role in processing flap-containing intermediates during DNA repair.

Article Abstract

From in vitro studies, flap endonuclease 1 (FEN1) has been proposed to play a role in the long patch (LP) base excision repair (BER) subpathway. Yet the role of FEN1 in BER in the context of the living vertebrate cell has not been thoroughly explored. In the present study, we cloned a DT40 chicken cell line with a deletion in the FEN1 gene and found that these FEN1-deficient cells exhibited hypersensitivity to H(2)O(2). This oxidant produces genotoxic lesions that are repaired by BER, suggesting that the cells have a deficiency in BER affecting survival. In experiments with extracts from the isogenic FEN1 null and wild-type cell lines, the LP-BER activity of FEN1 null cells was deficient, whereas repair by the single-nucleotide BER subpathway was normal. Other consequences of the FEN1 deficiency were also evaluated. These results illustrate that FEN1 plays a role in LP-BER in higher eukaryotes, presumably by processing the flap-containing intermediates of BER.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824787PMC
http://dx.doi.org/10.1158/1541-7786.MCR-09-0253DOI Listing

Publication Analysis

Top Keywords

fen1
8
long patch
8
patch base
8
base excision
8
excision repair
8
ber subpathway
8
fen1 null
8
ber
6
fen1 functions
4
functions long
4

Similar Publications

Discovery of new inhibitors of nuclease MRE11.

Eur J Med Chem

January 2025

Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic. Electronic address:

MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin.

View Article and Find Full Text PDF

Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms.

Sci Adv

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.

DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.

View Article and Find Full Text PDF

DNAzyme assisted single amplification for FEN1 activity detection using a personal glucose meter.

Anal Chim Acta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China. Electronic address:

Flap endonuclease 1 (FEN1) plays a vital role in cancer by modulating DNA repair mechanisms, inducing genomic instability, and serving as a promising biomarker for cancer diagnosis and prognosis. In this work, we present the development of a novel DNAzyme signal amplification-directed point-of-care sensing system (Dz-PGM) for the sensitive and specific detection of FEN1. The Dz-PGM system utilizes DNAzyme signal amplification in conjunction with a personal glucose meter (PGM) for reporting, capitalizing on a biochemical cascade initiated by FEN1 recognition.

View Article and Find Full Text PDF

Background/objectives: Nucleolin is a major component of the nucleolus and is involved in various aspects of ribosome biogenesis. However, it is also implicated in non-nucleolar functions such as cell cycle regulation and proliferation, linking it to various pathologic processes. The aim of this study was to use differential gene expression analysis and Weighted Gene Co-expression Network analysis (WGCNA) to identify nucleolin-related regulatory pathways and possible key genes as novel therapeutic targets for cancer, viral infections and other diseases.

View Article and Find Full Text PDF

As a core genetic biomolecule in ecosystems, the metabolic processes of DNA, particularly DNA replication and damage repair, are regulated by Flap endonuclease 1 (FEN1). Abnormal expression and dysfunction of FEN1 may lead to genomic instability, which can induce a variety of chromosome-associated disorders, including tumours. FEN1 has emerged as a prominent tumour marker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!