Association of sulphatide with influenza A virus (IAV) haemagglutinin (HA) delivered to the cell surface promotes progeny virus production. However, it is not known whether there is direct binding of HA to sulphatide. In this study, we found that recombinant HA, which was produced by a baculovirus protein expression system from the HA gene of A/duck/HK/313/4/78 (H5N3), bound to sulphatide in a dose-dependent manner and that the binding was inhibited by a specific antibody. Our results indicate that the recombinant HA is useful for elucidation of the binding domain of HA with sulphatide and for the development of new anti-IAV agents.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvq013DOI Listing

Publication Analysis

Top Keywords

binding sulphatide
8
influenza virus
8
produced baculovirus
8
baculovirus protein
8
protein expression
8
expression system
8
binding
4
sulphatide recombinant
4
recombinant haemagglutinin
4
haemagglutinin influenza
4

Similar Publications

Exploration of phytoconstituents of Medhya Rasayana herbs to identify potential inhibitors for through high-throughput screening.

Front Mol Biosci

October 2024

Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

(CST) is a key enzyme in sulfatide biosynthesis and regulation of the myelin sheath in the nervous system. To counter sulfatide accumulation with the deficiency of aryl sulfatase A, CST is considered a target protein in substrate reduction therapy in metachromatic leukodystrophy. In this study, 461 phytoconstituents from four herbs of Medhya Rasayana were screened using multi-pronged virtual screening methods including molecular docking, molecular dynamics (MD) simulation, and reverse pharmacophore analysis.

View Article and Find Full Text PDF

VP1 of human and murine noroviruses recognizes glycolipid sulfatide via the P domain.

J Biochem

September 2024

Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.

Noroviruses are a prevalent cause of human viral gastroenteritis, yet the precise mechanisms underlying their infection cycle, particularly their interactions with and entry into cells, remain poorly understood. Human norovirus (HuNoV) primarily targets human small intestinal epithelial cells, within which 3-O-sulfogalactosylceramide (sulfatide) ranks among the most abundant glycosphingolipids (GSLs). While sulfatide involvement in the binding and infection mechanism of several viruses has been documented, its interaction with noroviruses remains underexplored.

View Article and Find Full Text PDF

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in , but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells.

View Article and Find Full Text PDF

Cerebroside sulfotransferase (CST) is emerging as an important therapeutic target to develop substrate reduction therapy (SRT) for metachromatic leukodystrophy (MLD), a rare neurodegenerative lysosomal storage disorder. MLD develops with progressive impairment and destruction of the myelin sheath as a result of accumulation of sulfatide around the nerve cells in the absence of its recycling mechanism with deficiency of arylsulfatase A (ARSA). Sulfatide is the product of the catalytic action of cerebroside sulfotransferase (CST), which needs to be regulated under pathophysiological conditions by inhibitor development.

View Article and Find Full Text PDF

This review is an effort towards the development of substrate reduction therapy using cerebroside sulfotransferase (CST) as a target protein for the development of inhibitors intended to treat pathophysiological condition resulting from the accumulation of sulfatide, a product from the catalytic action of CST. Accumulation of sulfatides leads to progressive impairment and destruction of the myelin structure, disruption of normal physiological transmission of electrical impulse between nerve cells, axonal loss in the central and peripheral nervous system and cumulatively gives a clinical manifestation of metachromatic leukodystrophy. Thus, there is a need to develop specific and potent CST inhibitors to positively control sulfatide accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!