Fetal spinal cord (SC) tissue grafts can survive and develop into the lesioned SC, but no conclusive data are available concerning the long-term fate of transplanted material and the relation between the graft fate and the donor embryo age. Here, pre-labelled suspensions of ventral SC from E12 or E17 rat fetuses were grafted to the lumbar SC of adult rats with motoneuron depletion induced by perinatal injection of volkensin. E12 and E17 are presumably the stages when motoneuron development starts and terminates, respectively. Four or 10months post-grafting, SCs were analyzed to check the graft survival rate and to follow the differentiation and spatial distributions of grafted cells. Neurotoxic lesion produced a 61% motoneuronal loss in the lumbar SC. In transplanted animals, all E12 fetal grafts survived until the observed time-points and developed various mature cell phenotypes. Many motoneuron-like labelled cells were found within the graft area or adjacent to it. Conversely, none of the E17 fetal grafts survived, since no graft-derived elements with neuronal morphology were found either in the site of graft placement or adjacent to it. The present findings indicate that spinal neuroblasts can survive for a long time and develop within the motoneuron-depleted SC, and that the donor embryo age is crucial for successful engraftment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2010.02.003DOI Listing

Publication Analysis

Top Keywords

spinal cord
8
donor embryo
8
embryo age
8
e12 e17
8
fetal grafts
8
grafts survived
8
long-term survival
4
survival development
4
fetal
4
development fetal
4

Similar Publications

Spinal cord injuries, including rare cases without radiological abnormalities, pose diagnostic challenges, particularly in cases of delayed neurological deficit development. This case report describes a 55-year-old man with a stable L1 burst fracture who developed delayed neurological deficits two weeks after sustaining a fall despite no evidence of intrinsic or extrinsic spinal cord abnormalities on magnetic resonance imaging (MRI). The patient initially presented with back pain, normal muscle strength across all myotomes, and imaging that showed no canal stenosis or retropulsion fragments.

View Article and Find Full Text PDF

3D bioprinted dynamic bioactive living construct enhances mechanotransduction-assisted rapid neural network self-organization for spinal cord injury repair.

Bioact Mater

April 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.

View Article and Find Full Text PDF

Aim: Atlantoaxial dislocation is a loss of stability between the atlas and axis. It is rarely reported in patients with axial spondylarthritis. We present an axial spondylarthritis case revealed by atlantoaxial subluxation.

View Article and Find Full Text PDF

Complex staged hybrid repair of extent II thoracoabdominal aortic aneurysm secondary to type A aortic dissection.

J Vasc Surg Cases Innov Tech

April 2025

Division of Vascular Surgery, London Health Sciences Center, University of Western Ontario, London, Ontario, Canada.

Despite advancements in surgical techniques and critical care, managing complications of type A and B aortic dissections remains challenging. Common morbidities include paraplegia, renal failure, stroke, and intestinal ischemia. Risks are especially high in extensive repairs, such as Crawford extent II thoracoabdominal aortic aneurysms, and in older patients or those with heart failure, poor pulmonary function, or renal disease.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe condition that often leads to permanent functional impairments. The current treatment options are limited and there is a need for more effective treatments. Human umbilical cord mesenchymal stem cells (hUCMSCs) have shown promise in promoting neuroregeneration and modulating immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!