We have previously shown that in PC12 cells: (1) high extracellular KCl induces moesin phosphorylation, an event which was dependent on chloride channel activation, and (2) NGF induces moesin phosphorylation which is required for neurite outgrowth. These results suggest that NGF-induced intracellular signaling and neurite outgrowth is also mediated by activation of anion channels. Using a patch-clamp technique, we found that NGF treatment increased anionic conductance in PC12 cells, an effect which was completely blocked by NPPB, a chloride channel inhibitor. Also, the NGF-induced moesin phosphorylation was suppressed by NPPB. Additionally, NPPB and SITS, another chloride channel blocker, suppressed NGF-induced TrkA phosphorylation and subsequent PI3K/Akt phosphorylation and Rac1 activation in PC12 cells. Moreover, the chloride channel inhibitors also suppressed the neurite outgrowth and decreased the cell viability in response to long-term treatment of NGF. In summary, our results suggest that chloride ion flux plays an important role in TrkA-mediated signaling pathway during NGF-induced differentiation of PC12 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2010.01.015DOI Listing

Publication Analysis

Top Keywords

chloride channel
20
pc12 cells
20
neurite outgrowth
16
moesin phosphorylation
12
induces moesin
8
chloride
6
ngf-induced
5
pc12
5
cells
5
phosphorylation
5

Similar Publications

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

VX-770, C-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity.

Int J Mol Sci

January 2025

Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.

View Article and Find Full Text PDF

Diagnostic yield of cystic fibrosis from a South Australian monocentric cohort: a retrospective study.

BMJ Open

January 2025

Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia

Objectives: To determine the diagnostic yield of cystic fibrosis (CF) using a two-tiered genetic testing approach. Although newborn screening includes CF, this typically only covers a selection of common genetic variants, and with over 2000 reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, we hypothesised that patients will be missed and present clinically later in life.

Design: A retrospective study over a 5-year period (January 2018-December 2022).

View Article and Find Full Text PDF

Nanocellulose-toughened super-stretchable ionic conductive gel fibers for wearable strain sensors.

Int J Biol Macromol

January 2025

College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. Electronic address:

In recent years, conductive gel materials have attracted extensive attention in the field of flexible electronics because of their excellent elasticity. When constructed as gel fibers, they can adapt to greater deformation, be woven, and be assembled with fabrics to make wearable smart devices without compromising comfort. However, gel fibers reported often exhibit insufficient mechanical properties and poor adaptability to different environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!