Mice lacking the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) (PACAP(-/-)) display behavioral abnormalities, and genetic variants of the genes encoding PACAP are associated with schizophrenia. Clinical studies show that environmental factors, besides genetic factors, play a key role in etiology of many psychiatric disorders. This study examined the effects of environmental factors such as short-term social isolation and an enriched environment on behavioral abnormalities of PACAP(-/-) mice. Rearing in isolation for 2-weeks from 4-weeks old induced hyperlocomotion and aggressive behaviors in the PACAP(-/-) mice without affecting the behavioral performance of the wild-type controls. Adult PACAP(-/-) mice showed not only hyperactivity, jumping behavior, and depression-like behavior, but also decreased social interaction. These abnormal behaviors were improved by rearing for 4-weeks in an early enriched environment (from 4-weeks old), although the deficits of prepulse inhibition (PPI) were not influenced by the enriched condition. In contrast, rearing for 4-weeks in late enriched environment (from 8-weeks old) did not affect the hyperactivity and jumping behaviors in the PACAP(-/-) mice. These results suggest that abnormal behaviors except PPI deficits in PACAP(-/-) mice depend on the environmental factors during the early stages of development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2010.02.009 | DOI Listing |
Eur J Neurosci
January 2025
Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland.
Chronic migraine (CM) is the ultimate and most burdensome form of the transformation from episodic migraine (EM), called chronification. The mechanism behind migraine chronification is poorly known and difficult to explore as CM has the same spectrum of pathogenesis as EM and the EM-CM transition is bidirectional. Central sensitization (CS) is a key phenomenon in migraine: its mechanisms include disturbed neural plasticity, which is the ability of the nervous system to adapt to endo- and exogenous changes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.
A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE atherosclerosis model for possible effects on atherogenesis. Adult male ApoE mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham.
View Article and Find Full Text PDFNeuroendocrinology
December 2024
School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.
Introduction: The efferent vestibular system (EVS) originates in brainstem efferent vestibular nuclei (EVN) and modifies afferent vestibular signals at their source, in peripheral vestibular organs. Recent evidence suggests that EVS is also involved in the development of motion sickness symptoms, including vertigo and nausea, but the underlying mechanism is unknown. One possible link between EVN and motion sickness symptoms is through the neuropeptide calcitonin gene-related peptide (CGRP).
View Article and Find Full Text PDFActa Pharmacol Sin
December 2024
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Astrocytes are known to modulate synaptogenesis or neuronal activities, thus participating in mental functions. It has been shown that astrocytes are involved in the antidepressant mechanism. In this study we investigated the potential hormonal mediator governing the astrocyte-neuron interplay for stress-coping behaviors.
View Article and Find Full Text PDFJ Pain
November 2024
Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
Chemotherapy-induced peripheral neuropathy (CIPN) is a type of peripheral neuropathy that develops in patients treated with certain anticancer drugs. Oxaliplatin (OXA) causes CIPN in approximately 80-90 % of patients; thus, it is necessary to elucidate its underlying mechanism and develop effective treatments and prevention methods. The purpose of this study was to determine whether the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system in the spinal dorsal horn is involved in OXA-induced acute cold allodynia and examine the effect of a PAC1 receptor antagonist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!