An analysis of the SEVEN system: have we reached the summit of needle-type sensor accuracy?

J Diabetes Sci Technol

Academic Medical Centre, Department of Internal Medicine, Amsterdam, The Netherlands.

Published: September 2009

In this issue of Journal of Diabetes Science and Technology, Zisser and colleagues show improved sensor accuracy with the newest generation of needle-type sensors as compared to first generation sensors. Can we expect further improvement? It is unknown what the future holds, but there certainly seems much to be gained from improved calibration procedures. In addition, sensor operating times are increasing and it is hoped that this will translate into improved sensor use and thereby into improved glycemic control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769899PMC
http://dx.doi.org/10.1177/193229680900300520DOI Listing

Publication Analysis

Top Keywords

improved sensor
8
analysis system
4
system reached
4
reached summit
4
summit needle-type
4
sensor
4
needle-type sensor
4
sensor accuracy?
4
accuracy? issue
4
issue journal
4

Similar Publications

Background: Wearable sensor technologies, often referred to as "wearables," have seen a rapid rise in consumer interest in recent years. Initially often seen as "activity trackers," wearables have gradually expanded to also estimate sleep, stress, and physiological recovery. In occupational settings, there is a growing interest in applying this technology to promote health and well-being, especially in professions with highly demanding working conditions such as first responders.

View Article and Find Full Text PDF

Structured illumination microscopy (SIM) is a robust wide-field optical nanoscopy technique. Several approaches are implemented to improve SIM's resolution capability (∼2-fold). However, achieving a high resolution with a large field of view (FOV) is still challenging.

View Article and Find Full Text PDF

FTW SERS probes with Ag NCs-GO composite structure excited by evanescent wave for in situ detection of permethrin.

Anal Chim Acta

March 2025

Zhejiang Key Laboratory of Advanced Optical Functional Materials and Devices, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China. Electronic address:

Background: Permethrin is a pesticide used to kill insects, and once used in excess, it poses a great threat to the environment and human health, therefore, it is necessary to realize the rapid and accurate detection of permethrin. Fiber optic surface enhanced Raman scattering (SERS) probes have the advantages of small volume and can be used for remote monitoring, which have great potential for application in achieving in-situ detection of pesticide residues.

Results: Fiber taper waist (FTW) SERS probes modified by silver nanocubes-graphene oxide (Ag NCs-GO) composite structures were prepared for in situ detection of permethrin in lake water.

View Article and Find Full Text PDF

Introduction: Smartphone and wearable technologies are novel devices for monitoring postoperative mobility and recovery in total knee arthroplasty (TKA) patients. This systematic review of the highest-level evidence studies evaluated the advantages of these technologies in postoperative care, specifically focusing on 1) smartphone applications, 2) wearable devices, and 3) their combined use.

Methods: A systematic literature search from July 26, 2015, to June 13, 2024, identified Level-1 and -2 published studies investigating smartphone applications and wearables for monitoring post-TKA recovery.

View Article and Find Full Text PDF

Shifting surface plasmon resonance wavelength to the far-ultraviolet region with aluminum-based sensors.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan. Electronic address:

A novel aluminum (Al)-based surface plasmon resonance (SPR) sensor operating in the far-ultraviolet (FUV, <200 nm) region has been developed. By utilizing a thinner Al film compared to previously reported deep-ultraviolet (DUV, <300 nm) SPR sensors, the SPR wavelength was effectively maintained within the FUV region across various liquids. In the presence of resonant molecules, the SPR wavelength shift was notably enhanced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!