Background: Recent progress in the development of clinically accurate continuous glucose monitors (CGMs), automated continuous insulin infusion pumps, and control algorithms for calculating insulin doses from CGM data have enabled the development of prototypes of subcutaneous closed-loop systems for controlling blood glucose (BG) levels in type 1 diabetes. The use of a new personalized model predictive control (MPC) algorithm to determine insulin doses to achieve and maintain BG levels between 70 and 140 mg/dl overnight and to control postprandial BG levels is presented.

Methods: Eight adults with type 1 diabetes were studied twice, once using their personal open-loop systems to control BG overnight and for 4 h following a standardized meal and once using a closed-loop system that utilizes the MPC algorithm to control BG overnight and for 4 h following a standardized meal. Average BG levels, percentage of time within BG target of 70-140 mg/dl, number of hypoglycemia episodes, and postprandial BG excursions during both study periods were compared.

Results: With closed-loop control, once BG levels achieved the target range (70-140 mg/dl), they remained within that range throughout the night in seven of the eight subjects. One subject developed a BG level of 65 mg/dl, which was signaled by the CGM trend analysis, and the MPC algorithm directed the discontinuance of the insulin infusion. The number of overnight hypoglycemic events was significantly reduced (p = .011) with closed-loop control. Postprandial BG excursions were similar during closed-loop and open-loop control.

Conclusion: Model predictive closed-loop control of BG levels can be achieved overnight and following a standardized breakfast meal. This "artificial pancreas" controls BG levels as effectively as patient-directed open-loop control following a morning meal but is significantly superior to open-loop control in preventing overnight hypoglycemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769907PMC
http://dx.doi.org/10.1177/193229680900300506DOI Listing

Publication Analysis

Top Keywords

model predictive
12
mpc algorithm
12
overnight standardized
12
closed-loop control
12
control
11
predictive control
8
insulin infusion
8
insulin doses
8
type diabetes
8
control postprandial
8

Similar Publications

Background: De-intensification of anti-cancer therapy without significantly affecting outcomes is an important goal. Omission of axillary surgery or breast radiation is considered a reasonable option in elderly patients with early-stage breast cancer and good prognostic factors. Data on avoidance of both axillary surgery and radiation therapy (RT) is scarce and inconclusive.

View Article and Find Full Text PDF

A machine learning-based model to predict POD24 in follicular lymphoma: a study by the Chinese workshop on follicular lymphoma.

Biomark Res

January 2025

Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China.

Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.

Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio).

View Article and Find Full Text PDF

Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.

View Article and Find Full Text PDF

Association between remnant cholesterol (RC) and endometriosis: a cross-sectional study based on NHANES data.

Lipids Health Dis

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: Prior research indicates a potential link between dyslipidemia and endometriosis (EMs). However, the relationship between remnant cholesterol (RC) and EMs has not been thoroughly investigated. Consequently, looking into and clarifying the connection between RC and EMs was the primary goal of this study.

View Article and Find Full Text PDF

Background: In the intensive care unit (ICU), the incidence of iron-deficiency anemia (IDA) is relatively high and is associated with various adverse clinical outcomes. Therefore, it is crucial to identify simple and practical indicators to assess the mortality risk in ICU patients with IDA. This study aims to investigate the relationship between the Neutrophil Percentage-to-Albumin Ratio (NPAR) levels in patients with IDA in the ICU and their all-cause mortality at 30 and 365 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!