A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation. | LitMetric

AI Article Synopsis

  • Most hearing loss is linked to damage of cochlear outer hair cells (OHCs), which depend on the tectorial membrane (TM) for their operation.
  • A specific mutation in the alpha tectorin protein (C1509G) causes hearing loss in humans, and researchers created a mouse model with this mutation to study its effects.
  • The mutant mice showed shortened TM leading to inactive OHCs, but surprisingly had enhanced reverse transduction due to increased prestin levels, revealing complex interactions that affect hearing function.

Article Abstract

Most forms of hearing loss are associated with loss of cochlear outer hair cells (OHCs). OHCs require the tectorial membrane (TM) for stereociliary bundle stimulation (forward transduction) and active feedback (reverse transduction). Alpha tectorin is a protein constituent of the TM and the C1509G mutation in alpha tectorin in humans results in autosomal dominant hearing loss. We engineered and validated this mutation in mice and found that the TM was shortened in heterozygous Tecta(C1509G/+) mice, reaching only the first row of OHCs. Thus, deficient forward transduction renders OHCs within the second and third rows non-functional, producing partial hearing loss. Surprisingly, both Tecta(C1509G/+) and Tecta(C1509G/C1509G) mice were found to have increased reverse transduction as assessed by sound- and electrically-evoked otoacoustic emissions. We show that an increase in prestin, a protein necessary for electromotility, in all three rows of OHCs underlies this phenomenon. This mouse model demonstrates a human hearing loss mutation in which OHC function is altered through a non-cell-autonomous variation in prestin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869304PMC
http://dx.doi.org/10.1242/dmm.004135DOI Listing

Publication Analysis

Top Keywords

hearing loss
20
forward transduction
12
reverse transduction
12
alpha tectorin
12
deficient forward
8
transduction alpha
8
human hearing
8
loss mutation
8
transduction
6
loss
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!