Quick and accurate methods are required for the identification of industrial, environmental, and clinical yeast strains. We propose a rapid method for the simultaneous extraction of yeast mtDNA, nuclear DNA, and virus dsRNA. It is simpler, cheaper, and faster than the previously reported methods. It allows one to choose among a broad range of molecular analysis approaches for yeast typing, avoiding the need to use of several different methods for the separate extraction of each nucleic acid type. The application of this method followed by the combined analysis of mtDNA and dsRNA (ScV-M and W) is a highly attractive option for fast and efficient wine yeast typing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2009.10.004 | DOI Listing |
Food Res Int
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard.
View Article and Find Full Text PDFFood Res Int
January 2025
Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China. Electronic address:
Yeasts play a crucial role in determining the quality and yield of sauce-flavor Baijiu, yet the source, succession, and metabolic functions of the yeast community in fermented grains during stacking fermentation remains unclear. In this study, amplicon sequencing combined with solid-state fermentation was used to investigate the structure and function of yeast community during the first-round fermentation of sauce-flavor Baijiu. The richness and diversity of yeast community increased throughout fermentation, with 83.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
Nitrogen limitations in the grape must be the main cause of stuck fermentations during the winemaking process. In , a genetic segment known as region A, which harbors 12 protein-coding genes, was acquired horizontally from a phylogenetically distant yeast species. This region is mainly present in the genome of wine yeast strains, carrying genes that have been associated with nitrogen utilization.
View Article and Find Full Text PDFMicroorganisms
December 2024
Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan.
Proline is the most abundant amino acid in wine and beer, largely due to the limited utilization of proline by the yeast during fermentation. Previous studies have shown that the arginine transporter Can1 plays a role in regulating proline utilization by acting as a transceptor, combining the functions of both a transporter and a receptor for basic amino acids. However, the -disrupted strains have exhibited the inhibition of proline utilization under nutrient-rich conditions, indicating that additional factors beyond basic amino acids contribute to the inhibition of proline utilization.
View Article and Find Full Text PDFFoods
December 2024
Departamento de Química y Bioprocesos, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820244, Chile.
In this study, the influences of inorganic nitrogen source (INS) and organic nitrogen source (ONS) supplementation during the wine fermentation process using three non-Saccharomyces yeasts (, , and ) were analyzed. Diamine phosphate (DAP) was used as an INS, and lees enzymatic hydrolysate was used as an ONS. Complete alcoholic fermentation and a higher concentration of volatile compounds were obtained in fermentations with ONS, mainly esters from 81 to 4564 µg/L, alcohols from 231 to 7294 µg/L, and isoamyl acetate ester compounds from 12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!