Recent advances in high-throughput sequencing present a new opportunity to deeply probe an organism's transcriptome. In this study, we used Illumina-based massively parallel sequencing to gain new insight into the transcriptome (RNA-Seq) of the human malaria parasite, Plasmodium falciparum. Using data collected at seven time points during the intraerythrocytic developmental cycle, we (i) detect novel gene transcripts; (ii) correct hundreds of gene models; (iii) propose alternative splicing events; and (iv) predict 5' and 3' untranslated regions. Approximately 70% of the unique sequencing reads map to previously annotated protein-coding genes. The RNA-Seq results greatly improve existing annotation of the P. falciparum genome with over 10% of gene models modified. Our data confirm 75% of predicted splice sites and identify 202 new splice sites, including 84 previously uncharacterized alternative splicing events. We also discovered 107 novel transcripts and expression of 38 pseudogenes, with many demonstrating differential expression across the developmental time series. Our RNA-Seq results correlate well with DNA microarray analysis performed in parallel on the same samples, and provide improved resolution over the microarray-based method. These data reveal new features of the P. falciparum transcriptional landscape and significantly advance our understanding of the parasite's red blood cell-stage transcriptome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859250 | PMC |
http://dx.doi.org/10.1111/j.1365-2958.2009.07026.x | DOI Listing |
Res Rep Trop Med
January 2025
Parasitology Laboratory, Pasteur Institute of Bangui, Bangui, Central Africa Republic.
Background: Malaria is a major public health problem in the Central African Republic (CAR). Data on malaria epidemiology are often derived from confirmed cases of symptomatic malaria using passive detection approaches, with very limited knowledge of the extent of subclinical and submicroscopic infections.
Methods: A community-based cross-sectional study was conducted in Bangui, the capital of the CAR, to assess the prevalence of subclinical malaria parasitaemia.
Background: The limited efficacy of the two recently approved malaria vaccines, RTS,S/AS01 and R21/Matrix- M™, highlights the need for alternative vaccine candidate genes. Plasmodium falciparum Reticulocyte Binding Protein Homologue 5 (Pfrh5) is a promising malaria vaccine candidate, given its limited polymorphism, its essential role in parasite survival, a lack of immune selection pressure and higher efficacy against multiple parasites strains. This study evaluated the genetic diversity of Pfrh5 gene among parasites from regions with varying malaria transmission intensities in Mainland Tanzania, to generate baseline data for this potential malaria vaccine candidate.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India.
Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite , six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED).
View Article and Find Full Text PDFParasite Epidemiol Control
February 2025
Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
Background: Parasitic infections are known to suppress the cell mediated immunity that protects against tuberculosis. The status of parasitic infections among bacteriologically confirmed tuberculosis patients and their household contacts in Cameroon is not well established. This study aimed at reporting the status of parasitic infections in TB patients and their household contacts with keen interest in associated risk factors to disease exposure.
View Article and Find Full Text PDFJ Biomed Opt
February 2025
National Institute of Standards and Technology, Applied Physics Division, Boulder, Colorado, United States.
Significance: Developments of anti-gametocyte drugs have been delayed due to insufficient understanding of gametocyte biology. We report a systematic workflow of data processing algorithms to quantify changes in the absorption spectrum and cell morphology of single malaria-infected erythrocytes. These changes may serve as biomarkers instrumental for the future development of antimalarial strategies, especially for anti-gametocyte drug design and testing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!