Identification of genes downstream of nodal in the Ciona intestinalis embryo.

Zoolog Sci

Department of Applied Science, Kochi University, 2-5-1 Akebono-cho, Kochi-shi, Kochi 780-8520, Japan.

Published: February 2010

Nodal, a growth factor belonging to the TGF-beta superfamily, is required for the formation of the neural tube in Ciona intestinalis. Previous studies have revealed many genes whose expression is controlled by Nodal in the Ciona embryo; however, all of them encode transcription factors and signaling molecules. In the present study, we identified five genes upregulated or downregulated by the overexpression of Nodal in embryos of C. intestinalis. The upregulated genes included those encoding type IV collagen 1/3/5, laminin-alpha5, and Prickle. The downregulated genes included those encoding glypican and delta1-protocadherln-like. Many of these genes were expressed in the neural plate at the late gastrula stage. The present study revealed candidate effector genes that directly regulate, in response to Nodal, the morphogenesis of the neural tube in Ciona intestinalis.

Download full-text PDF

Source
http://dx.doi.org/10.2108/zsj.27.69DOI Listing

Publication Analysis

Top Keywords

ciona intestinalis
12
nodal ciona
8
neural tube
8
tube ciona
8
genes included
8
included encoding
8
genes
6
nodal
5
identification genes
4
genes downstream
4

Similar Publications

Voltage clamp fluorometry (VCF) is a powerful technique in which the voltage of a cell's membrane is clamped to control voltage-sensitive membrane proteins while simultaneously measuring fluorescent signals from a protein of interest. By combining fluorescence measurements with electrophysiology, VCF provides real-time measurement of a protein's motions, which gives insight into its function. This protocol describes the use of VCF to study a membrane protein, the voltage-sensing phosphatase (VSP).

View Article and Find Full Text PDF

The alternative oxidase reconfigures the larval mitochondrial electron transport system to accelerate growth and development in .

bioRxiv

February 2025

Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil.

The alternative oxidase (AOX) is naturally present in the mitochondrial electron transfer system (ETS) of many organisms but absent in vertebrates and most insects. AOX oxidizes coenzyme Q and reduces O in HO, partially replacing the ETS cytochrome c segment and alleviating the oxidative stress caused by ETS overload. As successfully demonstrated in animal models, AOX shows potential in mitigating mitochondrial diseases.

View Article and Find Full Text PDF

Brain-inspired wiring economics for artificial neural networks.

PNAS Nexus

January 2025

School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

Wiring patterns of brain networks embody a trade-off between information transmission, geometric constraints, and metabolic cost, all of which must be balanced to meet functional needs. Geometry and wiring economy are crucial in the development of brains, but their impact on artificial neural networks (ANNs) remains little understood. Here, we adopt a wiring cost-controlled training framework that simultaneously optimizes wiring efficiency and task performance during structural evolution of sparse ANNs whose nodes are located at arbitrary but fixed positions.

View Article and Find Full Text PDF

Catalytic subunit of DNA polymerase ζ (REV3), involved in translesion-replication is evolutionarily conserved from yeast and plants to higher eukaryotes. However, a large intermediate domain is inserted in REV3 of humans and mice. The domain has "DUF4683" region, which is significantly similar to human neurite extension and migration factor (NEXMIF).

View Article and Find Full Text PDF

Maintenance and breeding of experimental organisms are fundamental to life sciences, but both initial and running costs, and hands-on zootechnical demands can be challenging for many laboratories. Here, we first aimed to further develop a simple protocol for reliable inland culture of tunicate model species of the genus. We cultured both and in controlled experimental conditions, with a focus on dietary variables, and quantified growth and maturation parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!