Composite nanostructured samples of Ag (0.5-20%)/(C, S)-TiO(2) were synthesized and characterized by EDX, XRD, FT-IR, UV-vis, BET, XPS, and zeta potential measurements. Photocatalytic and biocidal tests revealed that the amount of the codoped silver (Ag(+)) in (C, S)-TiO(2) played a crucial, distinctive role in the photodegradation of gas-phase acetaldehyde as well as in the inactivation of Escherichia coli cells and Bacillus subtilis spores. Very interestingly, Ag/(C, S)-TiO(2) nanoparticles (crystallite size <10 nm) have shown very strong antimicrobial properties without light activation against both E. coli (log kill >8) and B. subtilis spores (log kill >5) for 30 min exposures, compared with P25-TiO(2). Thus, for the first time, we have demonstrated that titanium dioxide (an environmentally friendly photocatalyst) codoped with silver, carbon, and sulfur can serve as a multifunctional generic biocide as well as a visible light activated photocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la902844r | DOI Listing |
Luminescence
January 2025
Vlokh Institute of Physical Optics, Ivan Franko National University of Lviv, Lviv, Ukraine.
Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.
View Article and Find Full Text PDFBone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium-silver (Ce-Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol-gel Stöber method to synthesize doped BBGs based on S49B4.
View Article and Find Full Text PDFNanoscale
December 2024
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
The high overpotential of the oxygen evolution reaction (OER) and the strong corrosion of the anode are the main problems currently faced by the zinc hydrometallurgical process. This study achieved the successful synthesis of titanium dioxide nanotubes doped by Al and V on a TC4 alloy. Subsequently, a composite electrode, TC4/AVTN-7/PbO-ZrO-CoO, was prepared utilizing composite electrodeposition.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France.
Femtosecond laser inscription in a ytterbium-doped silver-containing phosphate glass is demonstrated by achieving 3D highly localized laser-induced silver photochemistry. The produced fluorescent silver nanoclusters lead to high optical contrast in the visible range, showing that the coinsertion of Yb ions is not detrimental to the silver-based photochemistry. We demonstrate efficient energy transfer from these silver nanoclusters to the rare-earth Yb ions, leading to near-IR background-free fluorescence emission.
View Article and Find Full Text PDFTalanta
April 2025
Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran. Electronic address:
Background: The concentration monitoring of the banned metronidazole (MTZ) drug as the alarmed carcinogenic agent in human biofluids is medically essential. The electrochemical aptasensors are good candidates to overcome some presence challenges in the detection process.
Results: Herein, an electrochemical aptasensor based on nitrogen and sulfur co-doped carbon dots (NcS-CDs) has been developed for the high-sensitive detection of MTZ for the first time.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!