A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Current rectification in temperature-responsive single nanopores. | LitMetric

Current rectification in temperature-responsive single nanopores.

Chemphyschem

State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing, 100871, P.R.China.

Published: March 2010

Herein we demonstrate a fully abiotic smart single-nanopore device that rectifies ionic current in response to the temperature. The temperature-responsive nanopore ionic rectifier can be switched between a rectifying state below 34 degrees C and a non-rectifying state above 38 degrees C actuated by the phase transition of the poly(N-isopropylacrylamide) [PNIPAM] brushes. On the rectifying state, the rectifying efficiency can be enhanced by the dehydration of the attached PNIPAM brushes below the LCST. When the PNIPAM brushes have sufficiently collapsed, the nanopore switches to the non-rectifying state. The concept of the temperature-responsive current rectification in chemically-modified nanopores paves a new way for controlling the preferential direction of the ion transport in nanofluidics by modulating the temperature, which has the potential to build novel nanomachines with smart fluidic communication functions for future lab-on-chip devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200900989DOI Listing

Publication Analysis

Top Keywords

current rectification
8
rectifying state
8
state degrees
8
non-rectifying state
8
pnipam brushes
8
rectification temperature-responsive
4
temperature-responsive single
4
single nanopores
4
nanopores demonstrate
4
demonstrate fully
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!