Unlabelled: The aim of this study was to evaluate and compare the biocompatibility of computer-assisted designed (CAD) synthetic hydroxyapatite (HA) and tricalciumphosphate (TCP) blocks and natural bovine hydroxyapatite blocks for augmentations and endocultivation by supporting and promoting the proliferation of human periosteal cells. Human periosteum cells were cultured using an osteogenic medium consisting of Dulbecco's modified Eagle medium supplemented with fetal calf serum, Penicillin, Streptomycin and ascorbic acid at 37 degrees C with 5% CO(2). Three scaffolds were tested: 3D-printed HA, 3D-printed TCP and bovine HA. Cell vitality was assessed by Fluorescein Diacetate (FDA) and Propidium Iodide (PI) staining, biocompatibility with LDH, MTT, WST and BrdU tests, and scanning electron microscopy. Data were analyzed with ANOVAs.

Results: After 24 h all samples showed viable periosteal cells, mixed with some dead cells for the bovine HA group and very few dead cells for the printed HA and TCP groups. The biocompatibility tests revealed that proliferation on all scaffolds after treatment with eluate was sometimes even higher than controls. Scanning electron microscopy showed that periosteal cells formed layers covering the surfaces of all scaffolds 7 days after seeding.

Conclusion: It can be concluded from our data that the tested materials are biocompatible for periosteal cells and thus can be used as scaffolds to augment bone using tissue engineering methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-009-3878-yDOI Listing

Publication Analysis

Top Keywords

periosteal cells
16
human periosteum
8
tissue engineering
8
scanning electron
8
electron microscopy
8
dead cells
8
cells
7
scaffolds
5
biocompatibility
4
biocompatibility individually
4

Similar Publications

Titanium miniplates and screws are commonly used in the surgical management of dentofacial deformities. Despite the opinion of the biocompatibility of these bone fixations, some patients experience symptoms of chronic inflammation around titanium implants even many years after their application. The aim of this study was to examine the levels of cytokines, chemokines, and growth factors released from the maxilla and mandible periosteum surrounding titanium fixations 11 months after the implantation procedure.

View Article and Find Full Text PDF

Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nucleus atlas of the periosteum at steady state and of the fracture site during the early stages of bone repair (https://fracture-repair-atlas.

View Article and Find Full Text PDF

The pivotal role of the Hes1/Piezo1 pathway in the pathophysiology of glucocorticoid-induced osteoporosis.

JCI Insight

December 2024

Department of Musculoskeletal Regenerative Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.

Glucocorticoid-induced osteoporosis (GIOP) lacks fully effective treatments. This study investigated the role of Piezo1, a mechanosensitive ion channel component 1, in GIOP. We found reduced Piezo1 expression in cortical bone osteocytes from patients with GIOP and a GIOP mouse model.

View Article and Find Full Text PDF

Aging predisposes individuals to reduced bone mass and fragility fractures, which are costly and linked to high mortality. Understanding how aging affects fracture healing is essential for developing therapies to enhance bone regeneration in older adults. During the inflammatory phase of fracture healing, immune cells are recruited to the injury site as periosteal skeletal stem/progenitor cells (pSSPCs) rapidly proliferate and differentiate into osteochondral lineages, allowing for fibrocartilaginous callus formation and complete bone healing.

View Article and Find Full Text PDF

A Bottom-Up Approach to Assemble Cell-Laden Biomineralized Nanofiber Mats into 3D Multilayer Periosteum Mimics for Bone Regeneration.

Nano Lett

November 2024

National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

The creation of complex multilayer periosteal graft structures is challenging. This study introduced a novel bottom-up approach to assemble cell-laden nanofiber mats into a three-dimensional (3D) multilayer periosteum mimic, successfully replicating the hierarchical complexity of the natural periosteum. These nanofiber mats, which were fabricated by electrospinning, surface modification, and stimulated body fluid (SBF) immersion, are composed of nanoscale polycaprolactone (PCL) fibers coated with a mineralized collagen layer along the fiber orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!